首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
ABSTRACT: Glycinin and β-conglycinin have unique functionality characteristics that contribute important properties in soy foods and soy ingredients. Limited functionality data have been published for glycinin and β-conglycinin fractions produced in pilot-scale quantities. Protein extraction conditions were previously optimized for our pilotscale fractionation process to maximize protein solubilization and subsequent product recovery. Glycinin, β-conglycinin, and intermediate (mixture of glycinin and β-conglycinin) fractions were prepared using optimized-process (OP) extraction conditions (10:1 water-to-flake ratio, 45°C) and previous conditions termed Wu process (WP) (15:1, 20°C). Viscosity, solubility, gelling, foaming, emulsification capacity, and emulsification activity and stability of the fractionated proteins, and soy protein isolate (SPI) produced from the same defatted soy white flakes were compared to evaluate functional properties of these different protein fractions. Differential scanning calorimetry, sodium dodecylsulfate-polyacrylamide gel electrophoresis, and surface hydrophobicity data were used to interpret functionality differences. OP β-conglycinin had more glycinin contamination than did the WP β-conglycinin. OP and WP solubility profiles were each similar for respective glycinin and β-conglycinin fractions. Emulsification activities and stabilities were higher for OP β-conglycinin and OP intermediate fractions compared with respective WP fractions. β-Conglycinin and SPI emulsification capacities (ECs) mirrored solubility profile, whereas glycinin ECs did not. OP glycinin had a higher foaming capacity than WP glycinin. OP and WP intermediate fraction apparent viscosities trended higher than those of other protein fractions. β-Conglycinin dispersions at pH 3 and 7 produced firm gels at 80°C, whereas glycinin dispersions formed weaker gels at 99°C and did not gel at 80°C.  相似文献   

2.
ABSTRACT: The principal soy storage proteins, β-conglycinin and glycinin, may provide valuable functionality as food ingredients. These soy protein fractions were isolated from K1430, Hutcheson, K93-90-29, and KS4997 and characterized for solubility, emulsion and surface properties, water holding capacity, and gel rheology. There were significant differences among genotypes regarding all functional properties. The K93-90-29 β-conglycinin exhibited significantly better functional properties compared to the other genotypes except for foam stability. Regarding glycinin, Hutcheson exhibited significantly better functional properties compared to the other genotypes except for foam stability. Continuous evaluation of soy genotypes in various food systems coupled with genetic manipulation should continue to better assess the potential of soy proteins as food ingredients.  相似文献   

3.
研究了几种微生物蛋白酶水解天然大豆蛋白的选择性。用SDS-聚丙烯酰胺凝胶电泳分析酶解过程中大豆蛋白各组分的变化,电泳结果显示-βconglycinin比glycinin容易被蛋白酶水解,-βconglycinin的α’亚基比α亚基更容易水解,-βconglycinin的β亚基比α’亚基和α亚基更难水解;glycinin的酸性亚基比其碱性亚基更容易被水解。  相似文献   

4.
天然大豆蛋白的选择性酶解   总被引:1,自引:0,他引:1  
研究了几种微生物蛋白酶水解天然大豆蛋白的选择性。用 DDD-聚丙烯酰胺凝胶电泳分析酶解过程中大豆蛋白各组分的变化,电泳结果显示β-conglycinin 比 glycinin 容易被蛋白酶水解,βconglycinin 的α’亚基比α亚基更容易水解,β-conglycinin的β亚基比α’亚基和α亚基更难水解;glycinin 的酸性亚基比其碱性亚基更容易被水解。  相似文献   

5.
D.A. Rickert    M.A. Meyer    J. Hu    P.A. Murphy 《Journal of food science》2004,69(8):623-631
ABSTRACT: Soy protein isolates (SPIs) are produced industrially using methods using various protein extraction temperatures and pH values. The effects of process temperature (25°C or 60°C) and pH (8.5, 9.5, or 10.5) on isoflavone and group B saponin extraction, partitioning, and profile during bench-scale SPI production were evaluated. Protein, isoflavone, and saponin extraction increased with increasing temperature and pH. Substantial quantities of isoflavones and saponins remained in the insoluble fraction waste stream. Isoflavones were also lost to the whey waste stream, whereas saponins were not detected in the whey. Neutralization of SPI samples at the time of analytical extraction increased measured isoflavone concentrations for the pH 8.5 process extraction treatments, whereas neutralization substantially increased measured saponin concentrations in SPIs for all process extraction treatments. Malonylglucoside isoflavones were primarily converted to β-glucoside forms as temperature and pH were increased, and these conditions caused conversion of αg, βg, and βa saponins to saponin V, I, and II forms, respectively. Analytical extraction pH should receive careful consideration when analyzing soy matrices for isoflavones and saponins.  相似文献   

6.
ABSTRACT:  The 2 main storage proteins of soy—glycinin (11S) and β-conglycinin (7S)—exhibit unique behaviors during processing, such as gelling, emulsifying, or foaming. The objective of this work was to observe the interactions between soy protein isolates enriched in 7S or 11S and whey protein isolate (WPI) in oil–water emulsion systems. Soy oil emulsion droplets were stabilized by either soy proteins (7S or 11S rich fractions) or whey proteins, and then whey proteins or soy proteins were added to the aqueous phase. Although the emulsifying behavior of these proteins has been studied separately, the effect of the presence of mixed protein systems at interfaces on the bulk properties of the emulsions has yet to be characterized. The particle size distribution and viscosity of the emulsions were measured before and after heating at 80 and 90 °C for 10 min. In addition, SDS-PAGE electrophoresis was carried out to determine if protein adsorption or exchanges at the interface occurred after heating. When WPI was added to soy protein emulsions, gelling occurred with heat treatment at WPI concentrations >2.5%. In addition, whey proteins were found adsorbed at the oil–water interface together with 7S or 11S proteins. When 7S or 11S fractions were added to WPI-stabilized emulsions, no gelation occurred at concentrations up to 2.5% soy protein. In this case also, 7S or 11S formed complexes at the interface with whey proteins during heating.  相似文献   

7.
等电点附近的大豆蛋白由于所带电荷减少、疏水相互作用增强而以聚集体的形式存在且其溶解性较差,故鲜有研究者关注该条件下大豆蛋白的乳化特性。本研究从颗粒稳定乳液的角度出发,分别以等电点附近(p H 5.0)和远离等电点(p H 7.0)两个条件制备了大豆分离蛋白(soy protein isolate,SPI)稳定的乳液,比较了两种条件下SPI的界面性质及所得乳液的储藏稳定性。结果发现,p H 5.0时SPI的溶解度仅为4.70±0.15%,远远低于p H 7.0时的93.28±1.89%;然而SPI浓度为0.50%时,p H 5.0的界面压却高于p H 7.0;以p H 5.0条件制备的SPI乳液,其界面蛋白吸附量高达87.03±1.28%,而p H 7.0制备的乳液仅为36.15±1.48%;p H 5.0的乳液两个月后液滴的平均粒径为63.15±0.30μm,与新鲜制备乳液(62.36±0.41μm)相比基本不变;p H 7.0的乳液经过两个月储藏后其液滴平均粒径从45.78±0.38μm增加至55.19±1.86μm。可见,以等电点附近条件制备的SPI乳液依然具有良好的储藏稳定性。  相似文献   

8.
以商业功能性大豆浓缩蛋白为原料,通过喷射蒸煮结合超滤技术,制备一种高纯度、高溶解性、低异黄酮、易消化的大豆分离蛋白。主要制备过程为:商业功能性大豆浓缩蛋白调pH值至9.0,进行胶体磨处理,120℃、90 s喷射蒸煮处理,再过80 ku超滤膜,所得蛋白分散液经酸沉、复溶、透析得大豆分离蛋白。所制备的蛋白纯度为84.63%(提高17.06%),氮溶指数为76.48%(提高67.71%),异黄酮含量由0.15 mg/g降至0.07 mg/g,且更容易被消化。相比于商业大豆浓缩蛋白,所制备的蛋白品质改善,制备工艺简单,可开发应用于特定人群专用蛋白配料。  相似文献   

9.
利用高效液相色谱(HPLC)法测定火腿肠中大豆分离蛋白的含量。色谱条件为:Xb ridgeBEH300 C4色谱柱;蒸发光散射检测器;梯度洗脱;流动相A:0.05%三氟乙酸-HPLC级水溶液,B:0.05%三氟乙酸四氢呋喃溶液;流速1.0 mL/min;检测波长254 nm;柱温30℃;进样量20μL。大豆分离蛋白在1%~9%含量范围内与特征峰面积呈良好的线性关系,回归方程为Y=2 923.1 X-970.85,相关系数R=0.994 2,平均回收率为99.30%,RSD为2.04%。HPLC法准确度、精密度、稳定性、重现性良好,为火腿肠中大豆分离蛋白的定量检测提供了可选择的方法。  相似文献   

10.
响应面优化转谷氨酰胺酶改性大豆分离蛋白工艺   总被引:1,自引:0,他引:1  
为获得适于添加到冷饮食品中的大豆分离蛋白,利用转谷氨酰胺酶(TG)对其进行改性,提高其乳化性。采用响应面试验设计,以酶添加量、酶解时间、酶解温度为试验因素,以乳化活力指数为响应值,建立数学模型,对酶解条件进行优化。结果表明,最佳酶解条件为TG酶的添加量0.93×10-4g、温度46℃、时间1.2h。在此条件下,乳化活力指数的预测值为1.9623m2/g,验证实验所得乳化活力指数为1.9658m2/g。所得回归模型拟合情况良好,达到设计要求,本实验得到的改性大豆分离蛋白的乳化性显著高于未改性的大豆分离蛋白。  相似文献   

11.
乳化剂提高大豆分离蛋白可食性膜性能的研究   总被引:1,自引:0,他引:1  
比较11种乳化剂对大豆分离蛋白膜抗拉伸强度、断裂伸长率、水蒸气透过率和O_2透气量的影响效果,结果显示蜂蜡和斯潘20对大豆分离蛋白膜具有最佳改善效果.进一步研究这两种乳化剂单一添加及复合使用时对膜综合性能的影响,同时测定膜表面接触角、成膜溶液中巯基及二硫键数量优化乳化剂使用量,最终获得复合使用两种乳化剂时,大豆分离蛋白膜性能改善效果明显,其添加量为蜂蜡0.0845%,斯潘200.506%,甘油1.335%.  相似文献   

12.
朱晓烨  迟玉杰  许岩  刘红玉 《食品科学》2010,31(19):422-425
大豆分离蛋白因其蛋白质含量高,具有凝胶性等多种功能特性,在食品工业中得到广泛应用。但大豆分离蛋白在贮藏过程中,其凝胶的稳定性往往下降,严重地影响了产品的质量。国内外研究发现,在贮藏过程中蛋白组成成分、蛋白浓度、温度、pH 值和离子强度等的变化对凝胶形成具有一定影响,通过各种改性方法可以提高大豆蛋白的凝胶稳定性。  相似文献   

13.
用抗坏血酸(AA)对经木瓜蛋白酶解(DH=3.7%和DH=8.9%)的大豆分离蛋白(SPI)进行改性研究。结果表明,抗坏血酸(AA)能改善酶解大豆分离蛋白的粘度、发泡性、发泡稳定性、乳化性、乳化稳定性。3%的SPI(DH%=3.7%)与0.3%的AA配比,3%的SPI(DH%=8.9%)与0.1%的AA配比最佳。  相似文献   

14.
大豆分离蛋白凝胶制备和凝胶质构特性研究   总被引:22,自引:1,他引:22  
本研究以大豆分离蛋白为原料,考察蛋白质浓度、pH值、加热温度、加热时间对凝胶形成的影响,采用物性仪对不同务件下制备的凝胶的质构特性进行研究,不同评价指标得出的结论不尽相同。通过正交实验得出形成凝胶硬度最大的制备条件为:蛋白浓度12%,pH值6.5,加热温度95℃,加热时间35min;形成凝胶脆性最大的制备凝胶争件为:蛋白浓度12%,pH值7.0,加热温度95℃,加热时间25min;形成凝胶弹性最好的制备凝胶务件为:蛋白浓度12%,pH值7.0,加热温度85℃,加热时间35min;形成凝胶粘附性最大的制备凝胶条件为:蛋白浓度12%,pH值7.0,加热温度95℃,加热时间35min。  相似文献   

15.
以提高大豆分离蛋白的凝胶强度为目的,采用添加D(+)木糖和黄原胶进行糖基化改性处理,中心组合设计模型对大豆分离蛋白共价改性工艺条件进行优化,测定并分析了改性复合物在各个条件下的凝胶强度。结果表明:适宜反应条件为反应温度87.27℃、反应时间40 min、复合糖添加量3.9%、糖胶比2.81∶1,此条件下凝胶强度可达到91.35 g,较未改性大豆分离蛋白提高78%。  相似文献   

16.
大豆分离蛋白可食膜的生产工艺及性能表征   总被引:2,自引:0,他引:2  
张赟彬  江娟 《食品科学》2012,33(6):100-104
选用大豆分离蛋白为原料,以卡拉胶添加量、甘油添加量、pH值和料液比为影响因素做正交试验,得到大豆分离蛋白膜的最佳配方。结果表明:以大豆分离蛋白为基数,卡拉胶添加量8%,甘油0.4mL/g,料液比1:15(g/mL),调节pH值到7.0时大豆分离蛋白膜的性能最佳。最佳工艺条件下测得大豆分离蛋白膜的水溶性为32.7%,水蒸气透过系数为2.348g ·mm/(m2 ·h ·kPa),抗拉强度为7.192MPa,断裂伸长率为128.1%。最佳膜的电镜分析结果:大豆分离蛋白分子在膜上的分布较均匀,一定程度上影响了膜的阻水性能,可以采用均质等方法加以改进,使大豆分离蛋白分子更好的分散在膜的表面,从而使膜具有更强的阻水性。  相似文献   

17.
正交设计法优化大豆分离蛋白膜工艺参数   总被引:2,自引:0,他引:2  
该文以大豆分离蛋白(SPI)为主要原料,添加甘油制成可食性膜,研究成膜介质和成膜方法对膜性能影响;并比较酸性和碱性条件下可食性膜性能,选择出最佳成膜工艺参数。酸性条件下为:蛋白质与甘油比例为2:1、pH为3、温度80℃、底物浓度8%;碱性条件下为:蛋白质与甘油比例为3:1、pH为10、温度90℃、底物浓度10%。  相似文献   

18.
将大豆分离蛋白经不同的变性温度及变性时间处理后,与鲢鱼肌原纤维蛋白以不同的比例混合制备热诱导凝胶。通过测定混合蛋白体系的凝胶强度及保水性,分析热变性大豆分离蛋白对混合凝胶特性的影响。结果表明,热变性后的大豆分离蛋白可以改善混合蛋白凝胶体系的凝胶强度及保水性,其中,大豆分离蛋白经过100℃变性180 min后,二者以1∶4的比例混合,得到的混合凝胶强度及保水性最佳。  相似文献   

19.
为明确大豆蛋白纳米纤维的结构形成和扩宽铁强化剂的食品工业应用,以大豆分离蛋白(soy protein isolate,SPI)为原料,通过5 h的酸热处理制备纳米纤维(soy protein isolate fibrils,Fib SPI),系统研究纤维形成前后蛋白结构的变化,并进一步制备铁纳米颗粒(iron nanoparticles,Fe NPs),探究Fib SPI对铁的稳态化作用。研究结果表明:在酸热处理过程中,SPI产生大量的β-折叠结构,其与硫磺素T结合,显示出增强的荧光强度;此外,7S组分先发生降解,利于纤维成核形成,随后11S逐渐被水解,促进纤维生长;同时水解产生大量的小肽组分,提高了产物的还原力。研究进一步利用Fib SPI递送铁纳米颗粒(Fe NPs),发现与原始SPI相比,铁纳米颗粒可在Fib SPI原位形成胶体稳定的铁-大豆蛋白纳米纤维复合物(Fe FibSPI),并以Fe(II)形式存在,其对乳液体系色泽及稳定性的影响较硫酸亚铁或氯化铁小。该研究可为构建新型植物基铁强化剂递送体系提供理论和方法指导。  相似文献   

20.
本文采用快速黏度分析仪(RVA)、流变仪、扫描电镜(SEM)对干热处理前后的普通玉米淀粉(CS)和蜡质玉米淀粉(WCS)与大豆分离蛋白(SPI)共混物的糊化特性、流变特性以及微观结构进行了研究。实验结果表明,与SPI干热处理后,淀粉的黏度明显增加,而WCS黏度的增加相比于CS更加明显。与未经干热处理的样品相比,干热混合物的G’、G"值显著增加,tanδ值明显降低。表明干热处理后,糊化后的淀粉凝胶网络结构增强,更加偏向于类固体的性质。SEM结果显示,与SPI干热使淀粉产生了聚集,CS/SPI产生了较小的聚集,而WCS/SPI形成了更大的块状聚集体。淀粉颗粒之间的聚集表明淀粉与SPI经干热处理后发生了相互作用,并且WCS与SPI的交互作用更加明显。SPI辅助干热改性可以作为蜡质玉米淀粉改性的新方法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号