首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
2.
We consider the finite element discretization of a convection-diffusion equation, where the convection term is handled via a fluctuation splitting algorithm. We prove a posteriori error estimates which allow us to perform mesh adaptivity in order to optimize the discretization of these equations. Numerical results confirm the interest of such an approach.  相似文献   

3.
The numerical approaches used for the solution of governing equations of fluid flow are dictated highly by the topology of the domain discretization. Two of the most commonly used discretization approaches are the structured and unstructured topologies. This paper describes the discretization of the domain using generalized elements with an arbitrary number of nodes to combine the advantages of both the structured and unstructured methodologies. Numerical algorithms for the solution of the governing equations for generalized mesh, an approach for handling mesh movement applicable to rotating machineries, and the application of this framework for overset meshes to handle moving body problems are discussed. A library-based approach has been adopted for the implementation of overset capability for the framework. The results from the application of this framework for various applications are presented.  相似文献   

4.
In this study, an automated adaptive mesh control scheme, based on local mesh modifications, is developed for the finite element simulations of 3D metal-forming processes. Error indicators are used to control the mesh discretization errors, and an h-adaptive procedure is conducted. The mesh size field used in the h-adaptive procedure is processed to control the discretization and geometric approximation errors of the evolving workpiece mesh. Industrial problems are investigated to demonstrate the capabilities of the developed scheme.  相似文献   

5.
A computational paradigm for multiresolution topology optimization (MTOP)   总被引:2,自引:2,他引:0  
This paper presents a multiresolution topology optimization (MTOP) scheme to obtain high resolution designs with relatively low computational cost. We employ three distinct discretization levels for the topology optimization procedure: the displacement mesh (or finite element mesh) to perform the analysis, the design variable mesh to perform the optimization, and the density mesh (or density element mesh) to represent material distribution and compute the stiffness matrices. We employ a coarser discretization for finite elements and finer discretization for both density elements and design variables. A projection scheme is employed to compute the element densities from design variables and control the length scale of the material density. We demonstrate via various two- and three-dimensional numerical examples that the resolution of the design can be significantly improved without refining the finite element mesh.  相似文献   

6.
We present a goal-oriented a posteriori error estimator for finite element approximations of a class of homogenization problems. As a rule, homogenization problems are defined through the coupling of a macroscopic solution and the solution of auxiliary problems. In this work we assume that the homogenized problem is known and that it depends on a finite number of auxiliary problems. The accuracy in the goal functional depends therefore on the discretization error of the macroscopic and the auxiliary solutions. We show that it is possible to compute the error contributions of all solution components separately and use this information to balance the different discretization errors. Additionally, we steer a local mesh refinement for both the macroscopic problem and the auxiliary problems. The high efficiency of this approach is shown by numerical examples. These include the upscaling of a periodic diffusion tensor, the case of a Stokes flow over a porous bed, and the homogenization of a fuel cell model which includes the flow in a gas channel over a porous substrate coupled with a multispecies nonlinear transport equation.  相似文献   

7.
A mixed finite-difference scheme is presented for the stress and free vibration analysis of simply supported nonhomogeneous and layered orthotropic thick plates. The analytical formulation is based on the linear, three-dimensional theory of orthotropic elasticity and a Fourier approach is used to reduce the governing equations to six first-order ordinary differential equations in the thickness coordinate. The governing equations possess a symmetric coefficient matrix and are free of derivatives of the elastic characteristics of the plate. In the finite difference discretization two interlacing grids are used for the different fundamental unknowns in such a way as to reduce both the local discretization error and the bandwidth of the resulting finite-difference field equations. Numerical studies are presented for the effects of reducing the interior and boundary discretization errors and of mesh refinement on the accuracy and convergence of solutions. It is shown that the proposed scheme, in addition to a number of other advantages, leads to highly accurate results, even when a small number of finite difference intervals is used.  相似文献   

8.
Computational homogenization with a priori assumed scale separation is considered, whereby the macroscale stress is obtained via averaging on Representative Volume Elements (RVE:s). A novel variational formulation of the RVE-problem, based on the assumption of weak micro-periodicity of the displacement fluctuation field, is proposed. Notably, independent FE-discretization of boundary tractions (Lagrange multipliers) allows for a parameterized transition between the conventional “strong” periodicity and Neumann boundary conditions. In this paper, the standard situation of macroscale strain control is considered. Numerical results demonstrate the convergence properties with respect to (1) the approximation of displacement and tractions and (2) the RVE-size for random realizations of the microstructure.  相似文献   

9.
Single scale wavelet approximations in layout optimization   总被引:1,自引:0,他引:1  
The standard structural layout optimization problem in 2D elasticity is solved using a wavelet based discretization of the displacement field and of the spatial distribution of material. A fictitious domain approach is used to embed the original design domain within a simpler domain of regular geometry. A Galerkin method is used to derive discretized equations, which are solved iteratively using a preconditioned conjugate gradient algorithm. A special preconditioner is derived for this purpose. The method is shown to converge at rates that are essentially independent of discretization size, an advantage over standard finite element methods, whose convergence rate decays as the mesh is refined. This new approach may replace finite element methods in very large scale problems, where a very fine resolution of the shape is needed. The derivation and examples focus on 2D-problems but extensions to 3D should involve only few changes in the essential features of the procedure.  相似文献   

10.
In this paper we present an a posteriori error analysis for elliptic homogenization problems discretized by the finite element heterogeneous multiscale method. Unlike standard finite element methods, our discretization scheme relies on macro- and microfinite elements. The desired macroscopic solution is obtained by a suitable averaging procedure based on microscopic data. As the macroscopic data (such as the macroscopic diffusion tensor) are not available beforehand, appropriate error indicators have to be defined for designing adaptive methods. We show that such indicators based only on the available macro- and microsolutions (used to compute the actual macrosolution) can be defined, allowing for a macroscopic mesh refinement strategy which is both reliable and efficient. The corresponding a posteriori estimates for the upper and lower bound are derived in the energy norm. In the case of a uniformly oscillating tensor, we recover the standard residual-based a posteriori error estimate for the finite element method applied to the homogenized problem. Numerical experiments confirm the efficiency and reliability of the adaptive multiscale method.  相似文献   

11.
《Computers & Structures》2006,84(10-11):657-675
The design of laminated composite based components requires a detailed analysis of the response of the structure when subjected to external loads. For the analysis of laminated composite plates, several plate theories have been proposed in the literature. Generally, these plate theories are used to obtain certain global response quantities like the buckling load. However, the use of these theories to obtain local response quantities, i.e. point-wise stresses; interlaminar stresses and strains, can lead to significant errors.In this paper, a detailed study of the quality of the point-wise stresses obtained using higher-order shear deformable, hierarchic and layerwise theories is done for a plate under transverse loading. The effect of equilibrium based post-processing on the transverse stress quantities is also studied. From the detailed study it is observed that the layerwise theory is very accurate. However, for all the models proper mesh design is required to capture boundary layer effects, discretization error, etc. Using focussed adaptivity, and post-processed state of stress, accurate representation of the local state of stress can be obtained, even with the higher-order shear deformable theories. Using this approach, the first-ply failure load is obtained with the Tsai–Wu criterion. It is observed that use of an adaptive procedure leads to significantly lower failure loads as compared to those given in the literature.  相似文献   

12.
In this paper, we propose a practical and effective approach to compute the worst-case norm of finite-dimensional convolution systems. System inputs are modelled to have bounded magnitude and rate limit. The computation of the worst-case norm is formulated as a fixed-terminal-time optimal control problem. Applying Pontryagin's maximum principle with the generalized Karush–Kuhn–Tucker theorem, we obtain necessary conditions which are subsequently exploited to characterize the worst-case input. Furthermore, we develop a novel algorithm called successive pang interval search (SPIS) to construct the worst-case input for general finite-dimensional convolution systems. The algorithm is guaranteed to converge and give an accurate solution within a prescribed error bound. To verify the accuracy of the algorithm, we derive bounds on computational errors including the truncation error and the discretization error. Then, the bounds on the errors yielded by our algorithm are compared with those of a comparative discrete-time method. This suggests that SPIS is deemed to be more accurate, analytically. Numerical results based on second-order linear systems show that both approaches give the worst-case norms with comparable errors, but SPIS requires much less computation time than the discrete-time method.  相似文献   

13.
Unstructured meshes have proved to be a powerful tool for adaptive remeshing of finite element idealizations. This paper presents a transputer-based parallel algorithm for two dimensional unstructured mesh generation. A conventional mesh generation algorithm for unstructured meshes is reviewed by the authors, and some program modules of sequential C source code are given. The concept of adaptivity in the finite element method is discussed to establish the connection between unstructured mesh generation and adaptive remeshing.After these primary concepts of unstructured mesh generation and adaptivity have been presented, the scope of the paper is widened to include parallel processing for un-structured mesh generation. The hardware and software used is described and the parallel algorithms are discussed. The Parallel C environment for processor farming is described with reference to the mesh generation problem. The existence of inherent parallelism within the sequential algorithm is identified and a parallel scheme for unstructured mesh generation is formulated. The key parts of the source code for the parallel mesh generation algorithm are given and discussed. Numerical examples giving run times and the consequent “speed-ups” for the parallel code when executed on various numbers of transputers are given. Comparisons between sequential and parallel codes are also given. The “speed-ups” achieved when compared with the sequential code are significant. The “speed-ups” achieved when networking further transputers is not always sustained. It is demonstrated that the consequent “speed-up” depends on parameters relating to the size of the problem.  相似文献   

14.

In this paper, a comparison study between gyro-based and gyroless approaches for spacecraft attitude estimation is presented. Due to its vulnerability to the model errors, the gyroless approach has not been widely focused on and there are only few comparison studies available. However, this conventional wisdom might not directly apply to CubeSat attitude estimation, where noisy MEMS gyro is usually implemented. Although the noise density can be improved by low-pass filtering, it sacrifices the bandwidth so that it can induce a discretization error when spacecraft rotates in high speed. This paper outlines expected pros and cons of gyroless attitude estimation with respect to cost and miniaturization, rotational agility, and model errors. Additionally, linearized system models for both of the attitude estimation methods are formulated and a simple guideline for tuning process noise against the model errors is proposed. Numerical results for a realistic earth observation scenario are presented to quantitatively compare the benefits and drawbacks of each attitude estimation method.

  相似文献   

15.
16.
The paper discusses error estimation and h-adaptive finite element procedures for elasticity and plasticity problems. For the spatial discretization error, an enhanced Superconvergent Patch Recovery (SPR) technique which improves the error estimation by including fulfillment of equilibrium and boundary conditions in the smoothing procedure is discussed. It is known that an accurate error estimation on an early stage of analysis results in a more rapid and optimal adaptive process. It is shown that node patches and element patches give similar quality of the postprocessed solution. For dynamic problems, a postprocessed type of error estimate and an adaptive procedure for the semidiscrete finite element method are discussed. It is shown that the procedure is able to update the spatial mesh and the time step size so that both spatial and time discretization errors are controlled within specified tolerances. A time-discontinuous Galerkin method for solving the second-order ordinary differential equations in structural dynamics is also presented. Many advantages of the new approach such as high order accuracy, possibility to filter effects of spurious modes and convenience to apply adaptive analysis are observed. For plasticity problems, some recent work that improved plastic strains and plastic localization is discussed.  相似文献   

17.
A finite difference method for a time-dependent singularly perturbed convection–diffusion–reaction problem involving two small parameters in one space dimension is considered. We use the classical implicit Euler method for time discretization and upwind scheme on the Shishkin–Bakhvalov mesh for spatial discretization. The method is analysed for convergence and is shown to be uniform with respect to both the perturbation parameters. The use of the Shishkin–Bakhvalov mesh gives first-order convergence unlike the Shishkin mesh where convergence is deteriorated due to the presence of a logarithmic factor. Numerical results are presented to validate the theoretical estimates obtained.  相似文献   

18.
This paper describes a physically-based spatial discretization scheme for the bidomain equations used for modeling wavefront conduction in the heart. The discretization method uses unstructured finite volumes, or the boxes, that are formed as a secondary geometric structure from an underlying hexaderal mesh. The method enforces local flux conservation and thus is ideally suited for dealing with the spatially varying material properties and complex geometries that characterize realistic cardiac muscle. Several examples are presented to demonstrate the application of the method to large scale simulation of wavefront propagation in the heart.  相似文献   

19.
The weighted essentially non-oscillatory (WENO) schemes are a popular class of high order numerical methods for hyperbolic partial differential equations (PDEs). While WENO schemes on structured meshes are quite mature, the development of finite volume WENO schemes on unstructured meshes is more difficult. A major difficulty is how to design a robust WENO reconstruction procedure to deal with distorted local mesh geometries or degenerate cases when the mesh quality varies for complex domain geometry. In this paper, we combine two different WENO reconstruction approaches to achieve a robust unstructured finite volume WENO reconstruction on complex mesh geometries. Numerical examples including both scalar and system cases are given to demonstrate stability and accuracy of the scheme.  相似文献   

20.
In this paper, attention is restricted to mesh adaptivity. Traditionally, the most common mesh adaptive strategies for linear problems are used to reach a prescribed accuracy. This goal is best met with an h-adaptive scheme in combination with an error estimator. In an industrial context, the aim of the mechanical simulations in engineering design is not only to obtain greatest quality but more often a compromise between the desired quality and the computation cost (CPU time, storage, software, competence, human cost, computer used). In this paper we propose the use of alternative mesh refinement with an h-adaptive procedure for 3D elastic problems. The alternative mesh refinement criteria allow to obtain the maximum of accuracy for a prescribed cost. These adaptive strategies are based on a technique of error in constitutive relation (the process could be used with other error estimators) and an efficient adaptive technique which automatically takes into account the steep gradient areas. This work proposes a 3D method of adaptivity with the latest version of the INRIA automatic mesh generator GAMHIC3D.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号