首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The electrochemical behaviour of lead brass with different leaded content in neutral chloride and sulphate solutions was investigated using the EIS technique. For comparison, the behaviour of the pure components of the alloy was investigated under the same conditions. The corrosion process was found to proceed via oxygen reduction following a diffusion controlled mechanism. The Cu electrode showed a higher polarization resistance due to film formation during oxygen reduction. Zn and Pb showed markedly lower impedance values due to continuous dissolution. The two investigated brass alloys (1.8% and 3.5% Pb, respectively) showed higher impedance values indicating the passivation of the surface in the Cl or SO4 media. Brass II was found to be more stable against corrosion indicating the beneficial effect of the lead content in the alloy.At cathodic potentials, the only process is the oxygen reduction. Anodic polarization leads to selective dissolution of Zn. At more positive potentials simultaneous dissolution of the alloy components with the deposition of Cu(I) salt takes place leading to the passivation of the alloy surface. At higher potentials, film breakdown occurs producing Cu(II) compounds whose diffusion control the corrosion process. At potentials higher than − 0.1 V, pitting corrosion was observed and a transmission line type in the impedance spectra was recorded.  相似文献   

2.
The electrochemical behavior of Cu-Ni alloys in acidic chloride medium was investigated. Commercial Cu-Ni alloys were investigated using potentiodynamic techniques, complemented by electrochemical impedance spectroscopy. The influence of alloy composition, chloride ion concentration and immersion time on the electrochemical response of the alloys was analyzed. Results of present investigations with pure metals (Cu and Ni) are also considered in this paper for the sake of comparison. Potentiodynamic measurements reveal that the increase in nickel content decreases the corrosion rate of the alloy and when the nickel content exceeds 30%, an increase in the corrosion rate was recorded. Also, the corrosion current density increases with increasing the concentration of chloride ions up to 0.6 M.The experimental impedance data were fitted to an equivalent circuit model representing the electrode/electrolyte interface. The relevance of the proposed model to the corrosion/passivation phenomena occurring at the electrode/solution interface was discussed.  相似文献   

3.
The corrosion behaviour of AISI 316L, wrought Co–28Cr–6Mo and Ti–6Al–4V was studied in aerated solutions of phosphate buffered saline (PBS) at various concentrations of bovine serum albumin (BSA) at 37 °C. Open circuit potential, potentiodynamic polarization, linear polarization resistance (LPR) and electrochemical impedance spectroscopy (EIS) experiments along with X-ray photoelectron spectroscopy (XPS) on Co–28Cr–6Mo oxide layer were conducted to study the interaction of BSA and passive layers and to measure the corrosion rates. Ti–6Al–4V alloy had the lowest corrosion rate and the highest breakdown potential. It was shown that BSA has enhanced the alloy passive film stability at higher concentrations.  相似文献   

4.
The corrosion susceptibility of alloy 33 in 0.5 mol/L sodium sulphate solutions containing or not 0.1 mol/L sodium chloride was tested at three different temperatures: 22 °C, 40 °C and 60 °C. Electrochemical studies were performed using corrosion potential measurements (Ecorr) as well as potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) techniques. Corrosion potential measurements showed that alloy 33 was passivated by a previously air formed film which was not destroyed during immersion in both solutions. No corrosion was observed during these tests although the temperature affected the film. Potentiodynamic polarization experiments showed that at high anodic potentials the previous film was broken up, and localized corrosion occurred in both solutions and at the three temperatures tested. Electrochemical impedance spectroscopy tests confirmed the presence of a stable passive film on the alloy surface at open circuit potential. Mott-Schottky analysis indicated that the passive film is an n-type semiconductor due to the presence of point defects of donor species, such as oxygen vacancies and interstitial metallic cations. As the potential increases the Cr(III) present in the barrier layer oxidizes producing Cr(VI) soluble species. The dissolution creates metallic cation vacancies that are acceptor species and the film changes from n-type to p-type semiconductor. The passive film rupture and the following localized attack are related to the drastic oxidative dissolution of the film at high anodic potentials, independent of its p-nature, chloride presence or increased temperature.  相似文献   

5.
Butyl triphenyl phosphonium bromide (BuTPPB) has been evaluated as a corrosion inhibitor for mild steel in 0.5 M H2SO4 solutions using galvanostatic polarisation and potentiostatic polarisation measurements. The study was also complemented by infra red (IR) spectroscopy, scanning electron microscopy (SEM) and quantum chemical calculations. Galvanostatic polarisation measurements showed that the presence of BuTPPB in aerated 0.5 M H2SO4 solutions decreases corrosion currents to a great extent and the corrosion rate decreases with increasing inhibitor concentration at a constant temperature. At 298K, inhibition efficiency was found to be 94.5% for 10−7 M BuTPPB which increased to about 99% for the BuTPPB concentration of 10−2 M. The effect of temperature on the corrosion behaviour of mild steel was studied at five different temperatures ranging from 298 to 338K. The polarisation curves clearly indicate that BuTPPB acts as a mixed type inhibitor. Adsorption of BuTPPB on the mild steel surface follows the Langmuir isotherm.Potentiostatic polarisation measurements showed that passivation was observed only for lower BuTPPB concentrations (10−5 and 10−7 mol l−1) for the mild steel in 0.5 M H2SO4. IR and SEM investigations also confirmed the adsorption of BuTPPB on the mild steel surface in 0.5 M H2SO4 solutions. The molecular parameters obtained using PM3 semi-empirical method, were correlated with the experimentally measured inhibitor efficiencies.  相似文献   

6.
Electrochemical techniques including open circuit potential measurement, potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) were used to evaluate the corrosion and passivation behaviour of Ti–6Al–4V alloy in sodium azide (NaN3) solutions compared to the behaviour of its pure base metal Ti. The results showed that increasing azide concentration increases the rate of corrosion (icorr) and shifts negatively the rest potential (Ef), as well as decreases the spontaneous thickening rates of the inner and outer layers constituting the passive oxide film on each sample. These effects are more accentuated for the alloy than for the metal. Moreover, the electrical resistance (Rox) and the relative thickness (1/Cox) of the oxide films on the two samples exhibit an almost linear decrease vs. NaN3 concentration. The results suggested that addition of Al and V to Ti, although improves its machinability, yet it decreases the performance of its surface oxide film to protect the degradation of the metal. The alloy was found to be more susceptible to corrosion than its base metal, since Ti expresses higher apparent activation energy (Ea) for the corrosion process than Ti–6Al–4V. Electrochemical behaviour of Ti in azide medium was also compared with that in various halide solutions. It was found that Ti has a stronger propensity to form spontaneous passivating oxide layers in bromide more than in azide and other halide media, where the positive shift in the value of Ef and the simultaneous increase in the oxide film resistance (Rox) follow the sequence: Br > > Cl > I > F.  相似文献   

7.
Corrosion behaviour of AZ80E alloy in comparison with pure Mg was investigated in phosphate buffer saline (PBS) solution in order to assess its bioactivity. Open circuit potential and EIS results reveal that both samples exhibit self-passivation with time. The higher corrosion resistance of the alloy is discussed from the perspective of its microstructure. Anodic oxidation for the alloy surface in borate buffer solution was also attempted potentiostatically to modify its corrosion behaviour. Anodised specimen at controlled potential of 1.0 V(SCE) can improve the durability of the alloy in PBS medium. The results were further confirmed by SEM and EDX analyses.  相似文献   

8.
This paper reports a successful electrodeposition method for coating hydroxyapatite (HAP) onto surgical grade stainless steel (SS). Pure HAP coatings could be achieved at −1400 mV vs SCE and the coating resistivity was assessed by potentiodynamic polarization and impedance techniques which showed that HAP coatings deposited onto the borate passivated-SS specimens possess maximum bioresistivity in Ringer’s solution. The coatings were characterized by X-ray diffraction (XRD), Scanning electron microscopy (SEM) and Atomic force microscopy (AFM). The results have showed that the borate passivation followed by HAP coating performed on 316L SS could enhance the longevity of the alloy in Ringer’s solution.  相似文献   

9.
The electrochemical behavior of copper (Cu), iron (Fe) and Cu-20%Fe alloy was investigated in 1.0 M sodium chloride solution of pH 2. The effect of thiourea (TU) addition on the corrosion rate of the Cu-20%Fe electrode was also studied. Open-circuit potential measurements (OCP), polarization and electrochemical impedance spectroscopy (EIS) were used. The results showed that the corrosion rates of the three electrodes follow the sequence: Cu < Cu-20%Fe < Fe. Potentiostatic polarization of the Cu-20%Fe electrode in the range −0.70 V to −0.45 V (SCE), showed that iron dissolves selectively from the Cu-20%Fe electrode surface and the rate of the selective dissolution reaction depends on the applied potential. At anodic potential of −0.45 V, thiourea molecules adsorb at the alloy surface according to the Langmuir adsorption isotherm. Increasing thiourea concentration (up to 5 mM), decreases the selective dissolution reaction and the inhibition efficiency η reach 91%. At [TU] > 5 mM, the dissolution rate of the Cu-20%Fe electrode increases due to formation of soluble thiourea complexes. At cathodic (−0.6 V), the inhibition efficiency of thiourea decreases markedly owing to a decrease of the rate of the selective dissolution reaction and/or desorption of thiourea molecules. The results indicated that thiourea acts mainly as inhibitor of the selective dissolution reaction of the Cu-20%Fe electrode in chloride solution.  相似文献   

10.
The electrochemical behaviour of the Ti–13Nb–13Zr and Ti–6Al–4V ELI alloys with martensitic microstructures was investigated by polarization and electrochemical impedance spectroscopy (EIS) in Ringer’s solution. The impedance spectra were interpreted by a two time-constants equivalent circuit. Both investigated alloys showed high corrosion resistance, but the thin and uniform passive film on the Ti–6Al–4V ELI alloy surface was more protective. The inner barrier and outer porous layer were highly resistant and capacitive. However, thicker and more porous passive film on the Ti–13Nb–13Zr alloy surface may be beneficial for osteointegration. The suitable thermomechanical processing improved the corrosion resistance of Ti–13Nb–13Zr alloy.  相似文献   

11.
A thin layer electrochemical cell was successfully developed to study the atmospheric corrosion behavior of copper film in printed circuit board (PCB-Cu) under thin electrolyte layer (TEL) and direct current electric field (DCEF) by electrochemical impedance and electrochemical noise analysis. The electrochemical measurements and SEM morphologies after corrosion test indicate that DCEF decreases the corrosion of PCB-Cu under TEL. The corrosion rate and probability of pitting corrosion of PCB-Cu under DCEF decrease due to the electric migration of aggressive Cl ion out of working electrode surface.  相似文献   

12.
The passivation of Nd-Fe-B permanent magnet was investigated in neutral borate solution at pH 8.4. The thickness of the passive oxide film on the magnets was measured by ellipsometry and the composition was estimated by glow discharge optical emission spectroscopy (GD-OES).The passivation of the magnets takes place in the potential range between −0.2 and 1.0 V vs. Ag/AgCl/Sat. KCl. In the potential range, current density decays to the lower than 10−6 A cm−2 after potentiostatic oxidation for 1800 s. The passive oxide film growth is assumed to be optically simulated from a model with a homogeneous film with complex refractive index, N = 2.1 − j0.086. The thickness estimated from the refractive index linearly increases with potential from 3.6 nm at −0.2 V to 7.8 nm at 1.0 V. The passive film growth follows the ionic migration model under high electric field, i.e., the Cabrera-Mott growth model. The ionic conductivity estimated from the model is about κ = 1.7 × 10−16 Ω−1 cm−1. The passive oxide film is preferentially composed of iron oxide/hydroxide. Boron and neodymium are, respectively, concentrated at the surface of the oxide film and at the inner layer in the oxide film.  相似文献   

13.
Semiconductor properties of passive films formed on the Fe-18Cr alloy in a borate buffer solution (pH = 8.4) and 0.1 M H2SO4 solution were examined using a photoelectrochemical spectroscopy and an electrochemical impedance spectroscopy. Photo current reveals two photo action spectra that derived from outer hydroxide and inner oxide layers. A typical n-type semiconductor behaviour is observed by both photo current and impedance for the passive films formed in the borate buffer solution. On the other hand, a negative photo current generated, the absolute value of which decreased as applied potential increased in the sulfuric acid solution. This indicates that the passive film behaves as a p-type semiconductor. However, Mott-Schottky plot revealed the typical n-type semiconductor property. It is concluded that the passive film on the Fe-18Cr alloy formed in the borate buffer solution is composed of both n-type outer hydroxide and inner oxide layers. On the other hand, the passive film of the Fe-18Cr alloy in the sulphuric acid consists of p-type oxide and n-type hydroxide layers. The behaviour of passive film growth and corrosion was discussed in terms of the electronic structure in the passive film.  相似文献   

14.
The electrochemical behaviour of Cu-40Zn alloy, in 3% NaCl medium pure and polluted by 2 ppm of S2− ions, has been studied in the absence and presence of the 3-amino-1,2,4 triazole (ATA) as corrosion inhibitor. Electrochemical measurements (polarisation curves and electrochemical impedance spectroscopy) showed that sulphides accelerate the alloy corrosion. The studies revealed that ATA inhibits both cathodic and anodic reactions, indicating a mixed type of inhibition. The inhibiting effect was higher in presence of S2− ions than in its absence. Scanning electron microscopy analysis showed that the inhibitor acts by preventing the adsorption of S2− ions, and formation of Cu2S at the alloy surface. The inhibition efficiency reaches 98% at a concentration of 5 × 10−3 M.  相似文献   

15.
The objective is to study the influence of pH on the corrosion and passive behaviour of duplex stainless steels (DSS) using potentiodynamic measurements, potentiostatic tests and electrochemical impedance spectroscopy (EIS).DSS are spontaneously passive in heavy brine LiBr solutions. Under potentiostatic conditions at applied anodic potentials within the passive domain an equivalent circuit with two time constants is the most suitable model to describe the corrosion mechanism in the interface electrolyte/passive film/metal. pH modifies the electrochemical properties of the passivity of the alloy in a 992 g/L LiBr solution reducing its resistance with the applied potential.  相似文献   

16.
A photon rupture method, film removal by a focused pulse of pulsed Nd-YAG laser beam irradiation, has been developed to enable oxide film stripping at extremely high rates without contamination from the film removal tools. In the present study, Zn-55mass%Al alloy and Al-9mass%Si alloy-coated steel specimens covered with protective nitrocellulose film were irradiated with a focused pulse of a pulsed Nd-YAG laser beam at a constant potential in 0.5 kmol m−3 H3BO3-0.05 kmol m−3 Na2B4O7 (pH = 7.4) with 0.01 kmol m−3 of chloride ions to investigate the initial stage of localized corrosion. At low potentials, oxide films on both coated alloys were reformed after the nitrocellulose films were removed by this method. The oxide film formation kinetics follows an inverse logarithmic law, in agreement with Cabrera-Mott theory. However, at high potentials, localized corrosion producing corrosion products occurs at the area where nitrocellulose film was removed. Nevertheless, when the applied potential is less noble, the dissolution current of the Zn-55mass%Al-coated steel samples is higher than that of Al-9mass%Si-coated samples.  相似文献   

17.
The semiconducting property of passive films of nitrogen-containing type 316LN stainless steels in different electrolytic media (0.5 M NaCl, borate buffer and borate buffer + 0.5 M NaCl) was investigated by electrochemical impedance spectroscopy (EIS). The nitrogen effect on the chemical composition of the passive films was investigated using X-ray photoelectron spectroscopy, (XPS). Based on capacitance results, the semiconducting parameters obtained from the Mott-Schottky plots indicated a decrease in the donor and acceptor density (ND and NA) with increase in nitrogen content, and variation in the flat band potential (EFB), depending on the electrolytic media. Thus indicating that the oxide layers of the passive film are modified by nitrogen addition. The presence of nitrogen and in the passive film was confirmed by the XPS analysis of the passive film. Cyclic polarization for pitting and repassivation corrosion studies indicated a decrease in hysteresis loop with increase in nitrogen content in 0.5 M NaCl solution. In the highest nitrogen-containing alloy (0.556 wt.% N), the hysteresis loop was small and negligible indicating that the pit initiation is minimum in this alloy. Based on the results obtained, an attempt was made to correlate the semiconducting nature of the passive films with pitting corrosion resistance.  相似文献   

18.
Cr- and Al-modified alloy steels using J55 carbon steel as base alloy were produced by remelting in a vacuum. Their corrosion resistance was estimated by open circuit potential, electrochemical polarisation measurements and immersion tests in a 3.5 wt.% NaCl solution. The modified alloy steels exhibit higher corrosion resistance with a more positive open circuit potential, lower corrosion current density and higher impedance than J55 steel. The immersion tests showed that the new alloy steels have lower corrosion rates and smaller pitting depth than J55 steel and a low-Cr steel.  相似文献   

19.
A newly synthesized oxadiazol-triazole derivative (TOMP), was investigated as corrosion inhibitor of mild steel in 0.5 M H2SO4 solution using weight loss measurements, polarization and electrochemical impedance spectroscopy (EIS) methods. Results obtained revealed that TOMP is effective corrosion inhibitor for mild steel in sulphuric acid and its efficiency attains more than 97.6% at 298 K. The number of water molecules (X) replaced by a molecule of organic adsorbate was determined from the substitutional adsorption isotherms applied to the data obtained from the weight loss experiments performed on mild steel specimen in acidic solution in the 298-333 K range.  相似文献   

20.
The effect of increasing vanadium carbide (VC) content on the corrosion behaviour of tungsten carbide - 10 wt% cobalt hardmetals was investigated in 1 M hydrochloric (HCl), and sulphuric (H2SO4) acids solutions. Increasing VC content makes the open circuit potential (OCP) in the test solutions more negative than the base alloy. Specimens exhibited pseudo passivation in all the test solutions. Increasing VC led to decreasing corrosion current density. However, the corrosion current densities during chronoamperometric tests were lower for 0 wt% VC. XRD and Raman spectroscopy showed that hydrated WO3 formed in the surface films of all specimens in hydrochloric acid (HCl), while hydrated vanadyl sulphate also formed for higher VC content specimens in sulphuric acid (H2SO4).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号