首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Flupirtine is a triaminopyridine-derived centrally acting analgesic, which interacts with mechanisms of noradrenergic pain modulation. Recently, it has been found to display neuroprotective effects in various models of excitotoxic cell damage, global and focal ischemia. Although this profile suggests that flupirtine acts as an antagonist of the N-methyl-D-aspartate (NMDA) and glutamate-triggered Ca2+ channel, there is no direct interaction with the receptor. In this paper, we examined whether flupirtine can act as an antioxidant and prevent free radical-mediated structural damage. Flupirtine at 5-30 microM inhibited ascorbate/ Fe2+ (1-10 microM)-stimulated formation of thiobarbituric reactive substances, an indicator of lipid peroxidation, in rat brain mitochondria. Interestingly, we found an increasing effectiveness of the drug at higher iron concentrations. Additionally, higher concentrations of flupirtine also provided protection against protein oxidation, as demonstrated by a decrease in protein carbonyls formed after treatment of rat brain homogenates with ascorbate/Fe2+. In PC12 cell culture, flupirtine at 10-100 microM was able to attenuate H2O2-stimulated cell death and improve the survival by 33%.  相似文献   

2.
1. Flupirtine (Katadolon) is a member of a class of triaminopyridines and is used as a nonopioid analgesic agent with muscle relaxant properties. 2. In situ experiments have revealed that flupirtine protects against ischemic-induced insults to the retina and brain. 3. Data derived from in vitro and in vivo studies suggest that flupirtine functions as a weak N-methyl-D-aspartate (NMDA) antagonist with little evidence that it acts on AMPA-kainate type glutamate receptors. 4. No evidence could be found from binding studies to suggest that flupirtine has an affinity for any of the characterized binding sites associated with the NMDA receptor. 5. Studies on cultured cortical neurons show that the NMDA-induced influx of 45Ca2+ is more readily decreased by flupirtine when a reducing agent (dithiothreitol) is present. However, when N'-ethylmaleimide, which is thought to alkylate the NMDA receptor redox site, is present, no obvious effect on the NMDA-induced influx of 45Ca2+ is produced by flupirtine. 6. Flupirtine is also known to counteract the production of reactive oxygen species caused by ascorbate/iron as well as to prevent apoptosis in cells lacking NMDA receptors induced by oxidative stress. 7. To explain all the experimental data, it is suggested that flupirtine affects the redox state/pH/electrons in the cell. The specific way by which flupirtine antagonizes the NMDA receptor might be by an action on the known redox site of the receptor.  相似文献   

3.
We tested the effect of flupirtine against ischemic and excitotoxic neuronal damage as well as on the glutamate-induced rise in cytosolic calcium ion concentration (= [Ca2+]i). For in vivo experiments we used a model of focal cerebral ischemia in mice. The middle cerebral artery was permanently occluded and 48 h afterwards brain tissue was stained with neutral red, perfusion-fixed and the infarct surface was determined planimetrically. Pretreatment with flupirtine significantly reduced the infarct area (controls: 24.3 +/- 4.8 mm2, 1 mg/kg flupirtine: 20.1 +/- 3.6 mm2 and 10 mg/kg flupirtine: 19.5 +/- 3.9 mm2; P < 0.05), whereas postischemic application of flupirtine failed to reduce the infarct area. For in vitro studies, primary neuronal cultures were prepared from the hippocampi of newborn rats and excitotoxic damage was induced by exposing the cells to 500 mu M L-glutamate for 30 min. We could demonstrate that flupirtine (1-10 microM) was capable of protecting neurons against glutamate-induced cytotoxicity. In order to elucidate the underlying mechanism of action, we tested the effect of flupirtine on the glutamate-induced rise in [Ca2+]i using the Ca2+-indicator fura-2. L-Glutamate added in a final concentration of 100 microM to the cultured cells for 16 s caused a rise in [Ca2+]i from about 100 nM to 900 nM. Flupirtine (0.1-10 microM) reduced the glutamate-induced rise in [Ca2+]i concentration dependently.  相似文献   

4.
The potency of Pb2+ inhibition of glutamate-activated currents mediated by N-methyl-D-aspartate (NMDA) receptors was dependent on the subunits composing the receptors when functionally expressed in Xenopus laevis oocytes. Pb2+ reduced the amplitudes of glutamate-activated currents and shifted the agonist EC50 values of NMDA receptors consisting of different subunit compositions. The IC50 values for Pb2+ ranged from 1.52 to 8.19 microM, with a rank order of potency of NR1b-2A > NR1b-2C > NR1b-2D > NR1b-2AC. For NR1b-2AC NMDA receptors, the IC50 value was dependent on the agonist concentration; at saturating agonist concentrations (300 microM), the IC50 value was 8.19 microM, whereas at 3 microM glutamate, the IC50 value was 3.39 microM. Pb2+ was a noncompetitive inhibitor of NR1b-2A, NR1b-2C and NR1b-2D NMDA receptors. At low concentrations (<1 microM) Pb2+ potentiated NR1b-2AC NMDA receptors. These data provide further evidence to support the hypothesis that the actions of Pb2+ on NMDA receptors are determined by the receptor subunit composition.  相似文献   

5.
1. Flupirtine is an analgesic agent which exhibits neuronal cytoprotective activity and may have value in the treatment of conditions involving cell injury and apoptosis. Since flupirtine has no action on known receptor sites we have investigated the effect of this drug on mitochondrial membrane potential, and the changes in intramitochondrial calcium concentration in particular. 2. The findings show that flupirtine increases Ca2+ uptake in mitochondria in vitro. At clinically relevant flupirtine concentrations, corresponding to flupirtine levels in vitro of 0.2 to 10 nmol mg(-1) mitochondrial protein, there was a 2 to 3 fold increase in mitochondrial calcium levels (P<0.01). At supra-physiological flupirtine concentrations of 20 nmol mg(-1) mitochondrial protein and above, the mitochondrial calcium concentrations were indistinguishable from those in untreated mitochondria. 3. Mitochondrial membrane potential closely paralleled the changes in mitochondrial calcium levels showing a 20% (P<0.01) increase when the flupirtine concentration was raised from 0.2 nmol to 10 nmol mg(-1) mitochondrial protein and a return to control values at 20 nmol mg(-1) protein. 4. The increase in mitochondrial calcium uptake and membrane potential were accompanied by an increase in mitochondrial ATP synthesis (30%; P<0.05) and a similar percentage reduction in mitochondrial volume. 5. Calcium at 80 and 160 nmol mg(-1) mitochondrial protein decreased ATP synthesis by 20-25% (P<0.001). This decrease was prevented or diminished if flupirtine at 10 nmol mg(-1) protein was added before the addition of calcium. 6. Since intracellular levels of flupirtine in intact cells never exceeded 10 nmol mg(-1) mitochondrial protein, these findings are supportive evidence for an in vivo cytoprotective action of flupirtine at the mitochondrial level.  相似文献   

6.
It has been suggested that the anticraving drug, acamprosate, acts via the glutamatergic system, but the exact mechanism of action is still unknown. The aim of this study was to characterize [3H]acamprosate binding and establish whether this showed any relation to sites on the NMDA receptor complex. We found saturable specific binding of [3H]acamprosate to rat brain membranes with a KD of 120 microM and a Bmax of 450 pmol/mg of protein. This acamprosate binding site was sensitive to inhibition by spermidine (IC50: 13.32 +/- 1.1 microM; Hill coefficient = 1.04), and arcaine and glutamate both potentiated the inhibitory effect of spermidine. Acamprosate binding to the acamprosate binding site was also sensitive to inhibition by divalent cations (Ca2+, Mg2+, and Sr2+). Conversely, acamprosate displaced [14C]spermidine binding from rat brain membranes with an IC50 of 645 microM and a Hill coefficient = 1.74. This inhibitory effect of acamprosate was not affected by arcaine, and was associated with a significant reduction in Bmax and binding affinity for spermidine, suggesting an allosteric interaction between acamprosate and a spermidine binding site. These data are consistent with an effect of acamprosate on the NMDA receptor protein complex, and acamprosate was also found to alter binding of [3H]dizocilpine to rat brain membranes. When no agonists were present in vitro (minimal NMDA receptor activation), acamprosate markedly potentiated [3H]dizocilpine binding at concentrations in the 5 to 200 microM range. However, under conditions of maximal receptor activation (100 microM glutamate, 30 microM glycine), acamprosate only inhibited [3H]dizocilpine binding (at concentrations concentrations >100 microM). When these binding studies were performed in the presence of 1 microM spermidine, the enhancing effects of acamprosate on [3H]dizocilpine binding were inhibited. The results show that acamprosate binds to a specific spermidine-sensitive site that modulates the NMDA receptor in a complex way. Together, with data from al Quatari et al. (see next paper), this work suggests that acamprosate acts as "partial co-agonist" at the NMDA receptor, so that low concentrations enhance activation when receptor activity is low, whereas higher concentrations are inhibitory to high levels of receptor activation. This may be relevant to the clinical effects of acamprosate in alcohol-dependent patients during abstinence.  相似文献   

7.
This study was performed to elucidate the role of nitric oxide (NO) in N-methyl-D-aspartate (NMDA) receptor-mediated glutamate neurotoxicity in the retina. The experiments were done with primary retinal cultures obtained from 17- to 19-day-old rat fetuses. The NOS activity measured by monitoring the conversion of [3H]arginine to [3H]citrulline was approximately 5 pmol/min/mg protein. A 10-min exposure of the cultured cells to glutamate (1 mM) or NMDA (1 mM) followed by a 1-h incubation in a normal medium consistently resulted in 60% cell death. The concomitant addition of an inhibitor of NOS, Nomega-nitro-L-arginine (300 microM), with glutamate or NMDA reduced cell death by 70%. A brief exposure of the cells to sodium nitroprusside (SNP, 500 microM) or S-nitrosocysteine (SNOC, 500 microM), NO-generating agents, caused 60% cell death. Depletion of NO by reduced hemoglobin prevented the cell death induced by either glutamate, NMDA, or NO generating agents. Fifty microM SNOC alone had no effect on the cell viability. However, pretreatment with 50 microM SNOC as well as simultaneous application of 50 microM SNOC with NMDA inhibited cell death induced by NMDA. These findings indicate that a low concentration of NO plays a protective role in glutamate neurotoxicity via closing the NMDA receptor gated ion channel. However, elevated concentrations of NO, interacting with oxygen radicals, become toxic and mediate glutamate-induced neurotoxicity in the cultured retinal neurons.  相似文献   

8.
The interaction of Ro 25-6981 with N-methyl-D-aspartate (NMDA) receptors was characterized by a variety of different tests in vitro. Ro 25-6981 inhibited 3H-MK-801 binding to rat forebrain membranes in a biphasic manner with IC50 values of 0.003 microM and 149 microM for high- (about 60%) and low-affinity sites, respectively. NMDA receptor subtypes expressed in Xenopus oocytes were blocked with IC50 values of 0.009 microM and 52 microM for the subunit combinations NR1C & NR2B and NR1C & NR2A, respectively, which indicated a >5000-fold selectivity. Like ifenprodil, Ro 25-6981 blocked NMDA receptor subtypes in an activity-dependent manner. Ro 25-6981 protected cultured cortical neurons against glutamate toxicity (16 h exposure to 300 microM glutamate) and combined oxygen and glucose deprivation (60 min followed by 20 h recovery) with IC50 values of 0.4 microM and 0.04 microM, respectively. Ro 25-6981 was more potent than ifenprodil in all of these tests. It showed no protection against kainate toxicity (exposure to 500 microM for 20 h) and only weak activity in blocking Na+ and Ca++ channels, activated by exposure of cortical neurons to veratridine (10 microM) and potassium (50 mM), respectively. These findings demonstrate that Ro 25-6981 is a highly selective, activity-dependent blocker of NMDA receptors that contain the NR2B subunit.  相似文献   

9.
A series of novel tricyclic pyrido-phthalazine-dione derivatives was tested for antagonistic effects at the strychnine-insensitive modulatory site of the N-methyl-D-aspartate (NMDA) receptor (glycineB). All compounds displaced [3H]MDL-105,519 binding to rat cortical membranes with IC50 values of between 90 nM and 3.6 microM. In patch-clamp experiments, steady-state inward current responses of cultured hippocampal neurons to NMDA (200 microM, glycine 1 microM) were antagonized by these same compounds with IC50 values of 0.14 to 13.8 microM. The antagonism observed was typical for glycineB antagonists, i.e., they induced desensitization and their effects were not use or voltage dependent. Moreover, increasing concentrations of glycine were able to decrease their apparent potency. Much higher concentrations (>100 microM) were required to antagonize alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid-induced currents. They were potent, systemically active NMDA receptor antagonists in vivo against responses of single neurons in the rat spinal cord to microelectrophoretic application of NMDA with ID50 values in the low milligram per kilogram i.v. range. They also inhibited pentylenetetrazol-, NMDA- and maximal electroshock-induced convulsions in mice with ED50 values ranging from 8 to 100 mg/kg i.p. The duration of anticonvulsive action was rather short but was prolonged by the organic acid transport inhibitor probenecid (200 mg/kg). The agents tested represent a novel class of systemically active glycineB antagonists with greatly improved bioavailability.  相似文献   

10.
A series of cationic porphyrins has been identified as G-quadruplex interactive agents (QIAs) that stabilize telomeric G-quadruplex DNA and thereby inhibit human telomerase; 50% inhibition of telomerase activity was achieved in HeLa cell-free extract at porphyrin concentrations in the range < or = 50 microM. Cytotoxicity of the porphyrins in vitro was assessed in normal human cells (fibroblast and breast) and human tumor cells representing models selected for high telomerase activity and short telomeres (breast carcinoma, prostate, and lymphoma). In general, the cytotoxicity (EC50, effective concentration for 50% inhibition of cell proliferation) against normal and tumor cells was > 50 microM. The porphyrins were readily absorbed into tumor cell nuclei in culture. Inhibition of telomerase activity in MCF7 cells by subcytotoxic concentrations of TMPyP4 showed time and concentration dependence at 1-100 microM TMPyP4 over 15 days in culture (10 population doubling times). The inhibition of telomerase activity was paralleled by a cell growth arrest in G2-M. These results suggest that relevant biological effects of porphyrins can be achieved at concentrations that do not have general cytotoxic effects on cells. Moreover, the data support the concept that a rational, structure-based approach is possible to design novel telomere-interactive agents with application to a selective and specific anticancer therapy.  相似文献   

11.
The aim of this study was to examine the interaction between N-methyl-D-aspartate (NMDA) receptor activation and the low threshold calcium spike (LTS) of phasically firing neurons in the rostral part of the substantia nigra pars compacta (SNpc) in mid-brain slices. Bath perfusion of 10 microM NMDA gradually increased the LTS area and the effect reached a maximum after 6 min of perfusion. This enhancement of the LTS by NMDA was blocked both by a competitive and non-competitive NMDA receptor antagonist, 50 microM D-AP5 and 10 microM MK801, respectively, demonstrating that this effect of NMDA was mediated through NMDA receptors. Prolonged exposure to increasing concentrations of NMDA (0.1-100 microM) progressively decreased the LTS area. The higher doses led to an irreversible marked depolarization and decrease of the membrane resistance. These results suggest that the LTS of SNpc neurons can trigger a NMDA receptor-dependent response which may have physiological and pathological roles.  相似文献   

12.
Understanding the roles of metabotropic glutamate (mGlu) receptors has been severely hampered by the lack of potent antagonists. LY341495 (2S-2-amino-2-(1S,2S-2-carboxycyclopropyl-1-yl)-3-(xanth-9-y l)propanoic acid) has been shown to block group II mGlu receptors in low nanomolar concentrations (Kingston, A.E., Ornstein, P.L., Wright, R.A., Johnson, B.G., Mayne, N.G., Burnett, J.P., Belagaje, R., Wu, S., Schoepp, D.D., 1998. LY341495 is a nanomolar potent and selective antagonist at group II metabotropic glutamate receptors. Neuropharmacology 37, 1-12) but can be used in higher concentrations to block all hippocampal mGlu receptors, identified so far by molecular cloning (mGlu1-5,7,8). Here we have further characterised the mGlu receptor antagonist activity of LY341495 and have used this compound to investigate roles of mGlu receptors in hippocampal long-term potentiation (LTP) and long-term depression (LTD). LY341495 competitively antagonised DHPG-stimulated PI hydrolysis in AV12-664 cells expressing either human mGlu1 or mGlu5 receptors with Ki-values of 7.0 and 7.6 microM, respectively. When tested against 10 microM L-glutamate-stimulated Ca2+ mobilisation in rat mGlu5 expressing CHO cells, it produced substantial or complete block at a concentration of 100 microM. In rat hippocampal slices, LY341495 eliminated 30 microM DHPG-stimulated PI hydrolysis and 100 microM (1S,3R)-ACPD-inhibition of forskolin-stimulated cAMP formation at concentrations of 100 and 0.03 microM, respectively. In area CA1, it antagonised DHPG-mediated potentiation of NMDA-induced depolarisations and DHPG-induced long-lasting depression of AMPA receptor-mediated synaptic transmission. LY341495 also blocked NMDA receptor-independent depotentiation and setting of a molecular switch involved in the induction of LTP; effects which have previously been shown to be blocked by the mGlu receptor antagonist (S)-MCPG. These effects may therefore be due to activation of cloned mGlu receptors. In contrast, LY341495 did not affect NMDA receptor-dependent homosynaptic LTD; an effect which may therefore be independent of cloned mGlu receptors. Finally, LY341495 failed to antagonise NMDA receptor-dependent LTP and, in area CA3, NMDA receptor-independent, mossy fibre LTP. Since in the same inputs these forms of LTP were blocked by (S)-MCPG, a novel type of mGlu receptor may be involved in their induction.  相似文献   

13.
14.
L-2-Chloropropionic acid (L-CPA), when orally administered at single high dose to rats produces a selective lesion in the cerebellum involving destruction of a high proportion of granule cells by a mechanism which involves N-methyl-D-aspartate (NMDA) receptors. Receptor binding studies demonstrated that L-CPA a had low affinity at the glutamate and glycine binding sites at NMDA receptors (530-660 microM), respectively, whereas L-CPA did not displace [3H]AMPA, [3H]NBQX or [3H]kainate from AMPA or kainate receptors. Whole cell-patch clamp experiments using cultured granule cells failed to demonstrate changes in membrane potential of cultured granule cells when either L-CPA (0.25 or 1 microM) was added alone to the bathing solution, or in combination with glycine (10 microM). Furthermore L-CPA did not alter the magnitude of the inward current produced by application of NMDA (100 microM)) to cultured granule cells, in the presence of glycine, as measured by patch clamp techniques. Experiments were also performed to discover whether L-CPA may alter the release of the excitatory amino acids from the cerebellum, which may then indirectly alter activity at glutamate receptors, leading to neuronal cell death. L-CPA (2 mM) did not affect either basal or stimulated (electrical or high potassium) endogenous aspartate release from superfused cerebellar slices nor did it alter the basal or stimulated release of [3H]aspartate from preloaded slices when introduced into the superfusion medium over 30 min. However, when cerebellar slices were preincubated with 2 mM L-CPA for 2 h at concentrations that are known to be neurotoxic to the brain in vivo, but not in vitro, the stimulated endogenous glutamate and aspartate net release was significantly attenuated, as compared to controls. Basal release was not significantly affected by the introduction of L-CPA-induced cerebellar neurotoxicity may be related to the inhibition of excitatory amino acid release from the cerebellum. In conclusion, although L-CPA does not appear to directly alter NMDA receptor activity the L-CPA-induced cerebellar neurotoxicity may be related to the inhibition of excitatory amino acid release from the cerebellum.  相似文献   

15.
The inhibition of N-methyl-D-aspartate (NMDA)-activated current in cultured fetal rat hippocampal neurons by Pb2+ was investigated at various stages of cell development. Pb2+ selectively inhibited NMDA currents recorded from young cultured neurons. In the first week of culture, Pb2+ showed the most prominent inhibition, which was gradually attenuated in the following weeks. Pb2+'s action was selective for NMDA- as opposed to either kainate- or quisqualate-induced currents. The current-voltage relationship for NMDA-induced currents in the presence of Pb2+ revealed that the effect of this cation was voltage-independent, which suggested that the site of interaction of Pb2+ with the NMDA receptor/channel is located outside the membrane electric field. Single channel studies showed that Pb2+ reduced the frequency but not the lifetime of the NMDA-activated single channel currents. Further evaluation of the mechanism of action of Pb2+ on the NMDA receptor demonstrated that this cation is a noncompetitive antagonist of both NMDA and glycine. We have demonstrated that the NMDA-induced whole cell currents change along with cell development, and the effects of Pb2+ are also dependent upon age of culture. The NMDA-induced currents in cultured rat hippocampal neurons had two components, one that decayed rapidly and another that decayed slowly. The fast component was clearly observed at concentrations of glycine higher than 1 microM, whereas the slow component reached its maximum amplitude at the glycine concentration of 1 microM. Moreover, the rapidly decaying component of NMDA-evoked whole cell currents was predominant in young cultured neurons, and its contribution to the total current was reduced in old cultured neurons.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Ethanol inhibition of NMDA receptor stimulation by the high-affinity selective agonist D, L-(tetrazol-5-yl)glycine (T5G) was studied using acutely dissociated neonatal whole-brain neurons loaded with the fluorescent indicator fura-2. T5G induced a concentration-dependent increase in intracellular calcium with a maximal increase above basal of 70nM at 16 microM T5G (EC50 of 0.66 +/- 0.18 microM). T5G agonist specificity was verified using the NMDA antagonists MK-801 (40 nM), APV (100 microM), and Mg2+ (1 mM). The T5G stimulation of calcium entry was both blocked and reversed by these antagonists. Ethanol significantly inhibited the T5G-mediated increase in intracellular calcium only at concentrations > or = 100 mM. In addition, the effect of increasing concentrations of ethanol in the presence of the glycine-site antagonist 5, 7-dichlorokynurenic acid (DCKA, 0.37 microM) on T5G-stimulated calcium entry was examined. A significant inhibition of the T5G-stimulated response in the presence of DCKA was observed at ethanol concentrations as low as 20 mM. These results support previous findings that T5G is a potent agonist of the NMDA receptor and indicate that stimulation of calcium entry by this agonist is less sensitive to ethanol inhibition than stimulation by NMDA.  相似文献   

17.
High-affinity NMDA receptor glycine recognition site antagonists protect brain tissue from ischemic damage. The neuroprotective effect of 5-nitro-6,7-dichloro-2,3-quinoxalinedione (ACEA 1021), a selective NMDA receptor antagonist with nanomolar affinity for the glycine binding site, was examined in rat cortical mixed neuronal/glial cultures. ACEA 1021 alone did not alter spontaneous lactate dehydrogenase (LDH) release. Treatment with ACEA 1021 (0.1-10 microM) before 500 microM glutamate, 30 microM NMDA, or 300 microM kainate exposure was found to reduce LDH release in a concentration-dependent fashion. These effects were altered by adding glycine to the medium. Glycine (1 mM) partially reversed the effect of ACEA 1021 on kainate cytotoxicity. Glycine (100 microM-1 mM) completely blocked the effects of ACEA 1021 on glutamate and NMDA cytotoxicity. The glycine concentration that produced a half-maximal potentiation of excitotoxin-induced LDH release in the presence of 1.0 microM ACEA 1021 was similar for glutamate and NMDA (18 +/- 3 and 29 +/- 9 microM, respectively). ACEA 1021 also reduced kainate toxicity in cultures treated with MK-801. The effects of glycine and ACEA 1021 on glutamate-induced LDH release were consistent with a model of simple competitive interaction for the strychnine-insensitive NMDA receptor glycine recognition site, although nonspecific effects at the kainate receptor may be of lesser importance.  相似文献   

18.
Effective drugs are not available to protect against beta-amyloid peptide (A beta)-induced neurotoxicity. Cortical neurons from rat embryos were treated with the toxic fragment A beta25-35 at 1 microM in the presence or absence of flupirtine, a triaminopyridine, successfully applied clinically as a nonopiate analgesic drug. Five days later 1 microM A beta25-35 caused reduction of cell viability to 31.1%. Preincubation of cells with flupirtine (1 or 5 microg/ml) resulted in a significant increase of the percentage of viable cells (74.6 and 65.4%, respectively). During incubation with A beta25-35 the neurons undergo apoptosis as determined by appearance of the characteristic stepladder-like DNA fragmentation pattern and by the TUNEL technique. A beta25-35-induced DNA fragmentation could be abolished by preincubation of the cells with 1 microg/ml flupirtine. Incubation with A beta25-35 reduces the intraneuronal level of GSH from 21.4 to 7.4 nmol/10(6) cells. This depletion could be partially prevented by preincubation of the cells with flupirtine. Thus, flupirtine may be adequate for the treatment of the neuronal loss in Alzheimer's disease (where A beta accumulates in senile plaques) and probably other neurological diseases such as amyotrophic lateral sclerosis.  相似文献   

19.
In order to study the different mechanisms of dynorphin spinal analgesia and neurotoxicity at low and high doses, the effects of various concentrations of dynorphin A-(1-17) on the free intracellular Ca2+ concentration ([Ca2+]i) in the cultured rat spinal neurons were studied using single cell microspectrofluorimetry. While dynorphin A-(1-17) 0.1-100 microM had no significant effect on basal [Ca2+]i, dynorphin A-(1-17) 0.1 and 1 microM significantly decreased the high KCl-evoked peak [Ca2+]i by 94% and 83% respectively. Dynorphin A-(1-17) 10 and 100 microM did not affect the peak [Ca2+]i following K+ depolarization, but in all these neurons there was a sustained and irreversible rise in [Ca2+]i following high-K+ challenge. Pretreatment with the specific kappa-opioid receptor antagonist nor-binaltorphimine 10 microM, but not the competitive NMDA receptor antagonist, DL-2-amino-5-phosphonovalerate (APV) 10 microM, significantly blocked the inhibitory effect of dynorphin A-(1-17) 0.1 microM on peak [Ca2+]i. However, APV 10 microM and nor-binaltorphimine 10 microM significantly antagonized the sustained rise in [Ca2+]i induced by a high concentration of dynorphin A-(1-17) 10 microM. Furthermore, in the presence, and following the addition, of increasing concentrations of dynorphin A-(1-17) (0.1, 1, 10 and 100 microM), the high concentrations of dynorphin A-(1-17) failed to produce a sustained rise in peak [Ca2+]i. These results suggested that dynorphin exerted a dualistic modulatory effect on [Ca2+]i in cultured rat spinal neurons, inducing a sustained and irreversible intracellular Ca2+ overload via activation of both NMDA and kappa-opioid receptors at higher concentrations, but inhibiting depolarization-evoked Ca2+ influx via kappa-opioid but not NMDA receptors at lower concentrations. Serial addition of graded concentrations of dynorphin A-(1-17) prevented the effect of high concentrations of dynorphin A-(1-17) on [Ca2+]i.  相似文献   

20.
1. Pilocarpine administration has been used as an animal model for temporal lobe epilepsy since it produces several morphological and synaptic features in common with human complex partial seizures. Little is known about changes in extracellular neurotransmitter concentrations during the seizures provoked by pilocarpine, a non-selective muscarinic agonist. 2. Focally evoked pilocarpine-induced seizures in freely moving rats were provoked by intrahippocampal pilocarpine (10 mM for 40 min at a flow rate of 2 microl min(-1)) administration via a microdialysis probe. Concomitant changes in extracellular hippocampal glutamate, gamma-aminobutyric acid (GABA) and dopamine levels were monitored and simultaneous electrocorticography was performed. The animal model was characterized by intrahippocampal perfusion with the muscarinic receptor antagonist atropine (20 mM), the sodium channel blocker tetrodotoxin (1 microM) and the N-methyl-D-aspartate (NMDA) receptor antagonist MK-801 (dizocilpine maleate, 100 microM). The effectiveness of locally (600 microM) or systemically (10 mg kg(-1) day(-1)) applied lamotrigine against the pilocarpine-induced convulsions was evaluated. 3. Pilocarpine initially decreased extracellular hippocampal glutamate and GABA levels. During the subsequent pilocarpine-induced limbic convulsions extracellular glutamate, GABA and dopamine concentrations in hippocampus were significantly increased. Atropine blocked all changes in extracellular transmitter levels during and after co-administration of pilocarpine. All pilocarpine-induced increases were completely prevented by simultaneous tetrodotoxin perfusion. Intrahippocampal administration of MK-801 and lamotrigine resulted in an elevation of hippocampal dopamine levels and protected the rats from the pilocarpine-induced seizures. Pilocarpine-induced convulsions developed in the rats which received lamotrigine perorally. 4. Pilocarpine-induced seizures are initiated via muscarinic receptors and further mediated via NMDA receptors. Sustained increases in extracellular glutamate levels after pilocarpine perfusion are related to the limbic seizures. These are arguments in favour of earlier described NMDA receptor-mediated excitotoxicity. Hippocampal dopamine release may be functionally important in epileptogenesis and may participate in the anticonvulsant effects of MK-801 and lamotrigine. The pilocarpine-stimulated hippocampal GABA, glutamate and dopamine levels reflect neuronal vesicular release.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号