首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A procedure has been developed for freeze-preservation of buds of the Scots pine (Pinus sylvestris L.). Instead of liquid nitrogen, cold storage in –80°C was used. The partly dormant material used in the experiments was obtained directly from a natural stand in Northern Finland and no prefreezing or cryoprotectants for preconditioning were used. Cooling velocity was 1°C/min up to a terminal freezing temperature of –39°C, after which the buds were immersed in liquid nitrogen at –196°C for 10 minutes. The material was then transferred to a deepfreezer at –80°C and stored up to 6 months. After rapid thawing, the buds were sterilized and their viability was tested by FDA staining and by culturing meristems on 1/2 MS medium for at least two weeks. All the freezing experiments were performed during March and April. The best survival of buds (90–100%) was achieved at the beginning of April, after which a pronounced decline in survival occurred obviously due to a rise in the water content of the buds.  相似文献   

2.
Summary Needle litterfall of a Scots pine was caught over 24 years (1962–1986) with litter-traps in a Scots pine stand in southeastern Finland. The age of the trees averaged 111 years in 1962. The stand was naturally recruited and only minor silvicultural treatments occurred during its history. Litterfall showed great year-to-year variation, the minimum being 18 g/m2 (in 1968) and maximum 213 g/m2 (in 1973). There was no overall trend in the amount of litterfall, and the age of the stand was thus not important in determining the needle fall. We used time domain time series analysis (ARIMA) and standard climatic data (temperature, precipitation) to investigate the relationship of litterfall to climatic factors. Mean July temperature was clearly correlated with needle litterfall. High temperature in July coincided with enhanced litterfall in the same and the next year. Litterfall enhanced litterfall in the same and the next year. Litterfall increased also after high temperatures during March–April, but only in the same year. In addition to these the litterfall had a 4-year self-dependency. This is approximately the same as the mean longevity of needles in the study area. Altogether the time series model we propose covers about 90% of the variance of the original time series.  相似文献   

3.
Exogenous spermidine (Spd) and the ectomycorrhizal (ECM) fungus Pisolithus tinctorius (Pers.) Coker and Couch had a synergistic effect on the maturation of Scots pine (Pinus sylvestris L.) somatic embryos. Induced maturation was expressed as a higher number of cell masses able to form embryos and a greater number of embryos formed per cell mass. In contrast, treatment with P. tinctorius alone on the hormone-free medium resulted in the lowest embryo-forming capacity. Retarded proliferation growth appeared to be required for maturation, but did not explain the synergistic effect of the fungus and exogenous Spd. Simultaneous treatment did not result in lower concentrations of putrescine (Put), Spd or spermine (Spm) in the embryogenic cell masses relative to the separate treatments. Our study is the first report on the use of a specific ECM fungus to induce maturation of somatic embryos, and it indicates that P. tinctorius was able to modify the maturation media in a way that, together with exogenous Spd, positively affected embryogenic cultures of Scots pine. Our study also shows that it is possible to enhance plant development other than root formation by using specific ECM fungi.  相似文献   

4.
This paper presents an empirical model for the distribution of diameter growth along the stem in Scots pine (Pinus sylvestris L.) and for the consequent stem form over time. First, the distribution of annual mass growth in the stem is determined as a function of the total annual growth in stem mass, current stem mass and the distribution of the latter along the stem. Second, the distribution of diameter growth is obtained by converting the fraction of annual growth in the stem mass at a given height in the stem into the thickness of the annual ring at the same height. Application of the model to Scots pine data sets including both young and mature trees not used in parameter estimation showed that the model was capable of reconstructing the distribution of diameter growth from the stem butt to the apex and from the pith to the stem surface at any height in the stem in both young and mature trees. The resulting empirical model was also linked to a physiological, process-based model in order to study its performance in a simulated stand. Simulations representing trees grown in unthinned and thinned Scots pine stands with trees of different status (from dominant to suppressed) showed that the response in tree growth to thinning in terms of the distribution of diameter growth along the stem was quite realistic relative to measured data.  相似文献   

5.
Summary Ultraviolet-B light (UV-B) and ultraviolet-A light (UV-A) at higher doses exert a strong inhibitory (toxic) effect on axis growth in Scots pine (Pinus sylvestris L.) seedlings. This effect is unrelated to control of growth rate by phytochrome. Rather, after a toxic UV dose growth of the pine seedling no longer responded to phytochrome. Both, the effect of UV-B as well as the inhibiting effect of UV-A could be photoreactivated by blue light (B). The action of UV-A was 2 fold: (i) it exerted a toxic effect which could be photoreactivated by B, and (ii) applied after UV-B it photoreactivated to some extent the toxic UV-B effect. Obviously, the UV-A range causes a toxic effect, and at the same time is capable of photoreactivating the toxic UV effect. At higher doses the toxic effect prevails.  相似文献   

6.
7.
Analysis of the branch area/stem area ratio of Scots pine growing in different climatic conditions in Europe and Siberia indicates that the branch area supported by a stem increases in warmer and drier conditions. The ratio was significantly correlated with several climatic variables, especially with potential evapotranspiration (E p). The ratio was negatively correlated with stand density (d s). A regression model combining E p and d s accounted for 85% of the total variation. These trends are believed to reflect hydraulic segmentation of trees and may represent a strategy to avoid cavitation in the tree, especially in the branches.  相似文献   

8.
Lignosulfonate (LS) is a lignin-based polymer obtained as a by-product from paper industry, which may have potential as an amendment with macronutrients. We studied effects of LS on the interaction between Scots pine (Pinus sylvestris L.) seedlings and hypocotyl cuttings and the ectomycorrhizal (ECM) fungusPisolithus tinctorius (Pers.) Coker and Couch. The experiments were performed in vitroon the MMN agar medium containing Fe–LS chelate at the concentrations of 0, 5, 10 and 25 mg/L. Inoculation with P. tinctoriusincreased root growth of the seedlings. Fe–LS enhanced P. tinctorius induced formation of lateral roots and had a dose-dependent positive effect on the establishment of mycorrhizas on the seedlings. The growth of the fungal mycelium was improved by Fe–LS, which might cause faster and more intensive contact with the roots and, thus, better root growth and mycorrhiza formation. P.tinctorius enhanced also adventitious root formation and subsequent root growth of the hypocotyl cuttings but without any synergistic effect with Fe–LS. Our study with P. tinctorius and Scots pine in vitro indicates that a low-cost by-product Fe–LS, obtained from paper industry, may be a potential tool to improve the efficiency of fungal inoculations, thus, facilitating the early interaction between an ECM fungus and host seedling.  相似文献   

9.
Results are presented from a fertilization experiment with wood bark ash (0, 1, 2, 5, 10, 20 Mg ha-1) applied to prevent and cure visible nutrient disorders of young Scots pine established on a peatland field. 13 years after fertilization, dieback of trees and other symptoms of nutrient disorders were substantially reduced or even eliminated, especially where higher doses had been applied. The volume of the growing stock was more than 70 m3 ha-1 for the highest dose while control plots produced less than 15 m3 ha-1. Vegetation characteristics changed following ash treatments with high ash doses favouring grasses and low ash doses promoting mosses. Some major changes in soil and foliar nutrient concentrations were evident due to ash fertilization. K and B, however, were clearly the most limiting nutrients that could be cycled where high doses of ash were used. This was particularly the case with a dose of 20 Mg ha-1. Decomposition of the topsoil was at its highest on plots with ash doses of 5 and 10 Mg ha-1 ash and at its lowest when the dose was 2 Mg ha-1. This was partly due to differences in the C/N ratio of the soil. All decomposition parameters indicated a high degree of humification in the topsoil. High N content (of organic material), low C/N in the soil and optimum levels of foliar N concentrations suggested sufficient N mineralization for tree growth to have occurred in the soil.  相似文献   

10.
Exogenous spermidine (Spd) and methylglyoxal bis(guanylhydrazone) (MGBG), a putative inhibitor of Spd synthesis, improved somatic embryo formation of Scots pine (Pinus sylvestris L.). The induced maturation due to MGBG and Spd was accompanied by significantly retarded proliferation growth and by reduction in the concentration of free polyamines compared to the control cultures. The action of MGBG revealed that it has a non-specific effect on the whole polyamine metabolism of Scots pine. Furthermore, at certain concentrations it may induce plant differentiation as well.  相似文献   

11.
Summary The amounts of starch, soluble sugars, triacylglycerols, diacylglycerols and free fatty acids were studied in Scots pine (Pinus sylvestris L.) during an annual cycle in current-year needles and in 1-, 2- and 3-year-old needles collected shortly after bud break. Determination of the compounds was performed using specific enzymatic assays, capillary gas chromatography and thin layer chromatography. Newly emerging needles contained relatively large amounts of starch, but only trace amounts of fat. During autumn and winter, fat content rose, while starch content decreased; amounts of both these reserve materials were very high the next spring shortly before bud break and decreased again during shoot elongation. Concentration of intermediates in triacylglycerol biosynthesis (diacylglycerols and free fatty acids), were low in summer and high in winter. The same pattern was observed for fructose and glucose (the predominant soluble sugars), galactose/arabinose and raffinose/melibiose. In contrast, sucrose concentrations were highest in spring and in autumn. Mature needles of different ages collected in May showed significant differences only in their triacylglycerol and starch content. Concentration changes of reserve materials are discussed in relation to season, mobilization and translocation processes, dormancy, frost resistance and the possibility of carbohydrate-fat interconversions.  相似文献   

12.
Studies of crystallinity of Scots pine and Norway spruce cellulose   总被引:3,自引:0,他引:3  
The variation in the mass fraction of crystalline cellulose (crystallinity of wood), the intrinsic crystallinity of cellulose, and the thickness of cellulose crystallites in early wood of Norway spruce [Picea abies (L.) Karst.], and Scots pine (Pinus sylvestris L.) grown in Finland were studied using wide angle X-ray scattering and nuclear magnetic resonance spectroscopy. The mass fraction of crystalline cellulose in wood increased slightly with the distance from the pith and was about 30±4% in mature wood of both species. The crystallinity of cellulose and the thickness of cellulose crystallites were almost constant for both species. The crystallinity of cellulose was 52±3% for both species and the average thickness of the cellulose crystallites was 32±1 Å and 31±1 Å for Norway spruce and Scots pine, respectively. The mass fraction of cellulose in wood, calculated from the crystallinity values, increased with the distance from the pith for both species.  相似文献   

13.
Finn  H.  Brække 《Plant and Soil》1995,168(1):179-185
The stump and root systems of Scots pine (Pinus sylvestris L.) and field-layer vegetation were sampled before and three growing seasons after drainage and fertilization of a low-shrub pine bog in SE Norway. Although the understorey vegetation roots responded significantly to nutrient application with higher concentrations of Ca and P, root biomass weights did not change. The fine and small pine roots responded with higher N, Ca, P and S concentrations, while those of Mn and Zn were significantly reduced. The NPK-application resulted in significantly higher pine root biomass. Relative to the total stores in the root zone the amounts of most elements in roots shifted to higher ratios at NPK-application. High figures for K, B and Mn indicate tight biochemical cycles of these elements. Compared to totals in above and below ground biomass, major parts of Fe and Pb were held by the roots. In contrast the field layer roots kept a very small per cent of total K, while the pine roots were low in Mn. The understorey vegetation was primarily restricted by P-deficiency, while the pine trees were also restricted by low supply of N. The field and the tree layer species seem to differ with respect to required nutrient concentrations in the root zone. These characteristics are important for direction and extent of successional changes after fertilization in low-shrub pine bog ecosystems.  相似文献   

14.
Domisch  Timo  Finér  Leena  Lehto  Tarja  Smolander  Aino 《Plant and Soil》2002,239(2):173-185
We studied the effect of soil temperature on nutrient allocation and mycorrhizal development in seedlings of Scots pine (Pinus sylvestris L.) during the first 9 weeks of the growing season. One-year-old seedlings were grown in Carex-peat from a drained and forested peatland at soil temperatures of 5, 9, 13 and 17 °C under controlled environmental conditions. Fourteen seedlings from each temperature treatment were harvested at intervals of three weeks and the current and previous year's parts of the roots, stems and needles were separated. Mineral nutrient and Al contents in all plant parts were determined and the tips and mycorrhizas of the new roots were counted. Microbial biomass C and N in the growth medium were determined at the end of the experiment. None of the elements studied, except Fe, were taken up from the soil by the seedlings during the first three weeks. Thereafter, the contents of all the elements increased at all soil temperatures except 5 °C. Element concentrations in needles, stems and roots increased with soil temperature. Higher soil temperature greatly increased the number of root tips and mycorrhizas, and the numbers of mycorrhizas increased more than did the length of new roots. Cenococcum geophilum was relatively more abundant at lower soil temperatures (5 and 9 °C) than at higher ones (13 and 17 °C). A trend was observed for decreased microbial biomass C and N in the peat soil at higher soil temperatures at the end of the experiment.  相似文献   

15.
Explants from 10 to 40-year-old Scots pine trees (Pinus sylvestris L.) were cultured in vitro. Material was collected from Northern Finland once or twice a week during 1984–1987. excised shoot meristems and lower parts of the buds formed soft callus on modified MS medium. A seasonal effect was observed in the explant viability and degree of contamination. Callus proliferation was highest from explants collected in December and January and during the growing season from April to July, and lowest in February and during the autumn from September to November. It seemed that the bud metabolism at each particular time was rather persistent and affected the outcome of the experiments. Contamination was significantly higher from December to April. Organogenesis occurred only rarely.  相似文献   

16.
A Scots pine (Pinus sylvestris L.) cDNA library was screened with two heterologous cDNA probes (P31 and T10) encoding cytosolic and chloroplastic superoxide dismutases (SOD) from tomato. Several positive clones for cytosolic and chloroplastic superoxide dismutases were isolated, subcloned, mapped and sequenced. One of the cDNA clones (PS3) had a full-length open reading frame of 465 bp corresponding to 154 amino acid residues and showed approximately 85% homology with the amino acid sequences of angiosperm cytosolic SOD counterparts. Another cDNA clone (PST13) was incomplete, but encoded a putative protein with 93% homology to pea and tomato chloroplastic superoxide dismutase. The derived amino acid sequence from both cDNA clones matched the corresponding N-terminal amino acid sequence of the purified mature SOD isozymes. Northern blot hybridizations showed that, cytosolic and chloroplastic CuZn-SOD are expressed at different levels in Scots pine organs. Sequence data and Southern blot hybridization confirm that CuZn-SODs in Scots pine belong to a multigene family. The results are discussed in relation to earlier observations of CuZn-SODs in plants.  相似文献   

17.
The photochemical activity of native Central Siberian Scots pine trees (Pinus sylvestris L) was estimated from the middle of February to the middle of March 2001. We measured chlorophyll (Chl) fluorescence in attached intact needles from trees located approx. 30 km west of the Yenisey river (60°44′N, 89°09′E) near the village of Zotino. In this period, the air temperature varied between −39 °C and +7 °C. At temperatures below −10 °C, P. sylvestris needles did not exhibit any variable Chl fluorescence during the daylight period. During the night, however, the effective quantum yield of photosystem 2 (PS2) photochemistry, Φ22 = (Fm′ − Ft)/Fm′), increased from values near zero to values between 0.05 and 0.20 depending on the needle temperature and sample investigated. The increase started soon after dusk and lasted for 3–6 h depending on the temperature. A faster increase of Φ2 was found for temperatures around −16 °C, and lower rates occurred at lower temperatures. Irrespective of the temperature, Φ2 decreased rapidly to near zero values at dawn, when the photosynthetic photon flux density increased to about 1–5 μmol m−2 s−1, and remained near zero throughout the day. At temperatures higher than −10 °C, the diurnal decrease and the nocturnal increase of Φ2 were less distinct or disappeared completely. Hence the winter-adapted Scots pine maintains some photochemical activity of PS2 even at extremely cold temperatures. The capacity of photochemical reactions below −10 °C is, however, very limited and PS2 photochemistry is saturated by an extremely low irradiance (less than 5 μmol m−2 s−1).  相似文献   

18.
The geographical variation in the composition of triacylglycerols in seeds of Scots pine (Pinus sylvestris L.) and Norway spruce [Picea abies (L.) Karst.], grown in Finland, was analyzed. The total lipid content of pine seeds was slightly higher in the northernmost provenance (68 °50N), whereas the lipid content of spruce seeds was not affected systematically by the geographical origin of the seeds. The species studied differed in the proportions of fatty acids in their triacylglycerols, though the three most abundant components were the same, i.e. oleic acid (181 n9), linoleic acid (182n-6) and 5,9,12-octadecatrienoic acid (183 5c9c12c). These fatty acids corresponded to more than 80 mol% of the total fatty acids. According to mass spectrometric analyses, the triacylglycerols of both spruce and pine seeds consisted of the same molecular species with 52–56 acyl carbons, but in different proportions. Molecules with 54 acyl carbons represented approximately 75% of the pine and 85% of the spruce triacylglycerols, with the most abundant molecular species being 545, 546 and 547. Some minor differences in the fatty acid composition of triacylglycerols of pine seeds from different seed collecting areas were found: the proportion of linoleic acid slightly increased whereas that of 5,11,14-eicosatrienoic acid decreased towards the northern origins. Similar differences were not found in the proportions of fatty acids in spruce seed lots. Furthermore, the proportions of triacylglycerols in both pine and spruce seeds from northern and southern collecting areas were not significantly different. The higher content of total lipids in spruce seeds compared with pine seeds may be due to the structure of the seed coat, and the lipophilic layers inside it, acting as a barrier to imbibition.  相似文献   

19.
In the present study ectomycorrhizal development of Laccaria bicolor, Rhizopogon luteolus and Suillus bovinus associated with Scots pine (Pinus sylvestris) seedings was studied as affected by primary stand humus, secondary stand humus, podsolic sandy soil or peat in perspex growth chambers. After 9 weeks, ectomycorrhizal development with S. bovinus was significantly greater in peat and primary stand humus than in secondary stand humus or podsolic sandy soil. Ectomycorrhizal development with R. luteolus in secondary stand humus was higher than in primary stand humus. Degree of ectomycorrhizal development of L. bicolor, R. lutuelus and S. bovinus on Scots pine was related to potassium concentration, organic matter content and pH of the soils suggesting that chemical composition of the soils affects ectomycorrhizal development.  相似文献   

20.
Mikael Ohlson 《Plant and Soil》1995,172(2):235-245
Nutrient content in peat and growth rate, rate of nutrient accumulation and allocation patterns in Scots pine Pinus sylvestris L. from eleven natural Swedish peatlands were examined. The peatlands studied represented a wide range of climatic conditions and mire types. Whole and even-sized pines with intact root-systems were excavated to give the whole-pine budget for growth and nutrient accumulation. All samples originated from hummock communities.Pine growth and nutrient characteristics were much more variable in the minerogenous sites than in the ombrogenous sites, which indicates a larger environmental heterogeneity within the minerogenous sites. In the ombrogenous sites, rate of pine growth was constant, approximately 1 mg day-1, and independent of latitudinal variation. There was either no relationship between latitudinal location and growth rate in the minerogenous sites, which suggests that pine growth is largely controlled by site-specific, very local conditions. The growth rate of pines was not correlated with any peat nutrient. The pines allocated a large proportion of their nutrient-pool to the metabolically active current year's growth. This is likely a trait that enables Scots pine to occupy a wide range of peatland types in which it experience a marked imbalance and shortage of nutrients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号