首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sorption capacity of oyster mushroom (Pleurotus platypus), button mushroom (Agaricus bisporus) and milky mushroom (Calocybe indica) were evaluated on biosorption of heavy metals, viz. cadmium (II) and lead (II) from aqueous solutions. The optimum sorption conditions were studied for each metal separately. The desired pH of the aqueous solution was found to be 6.0 for the removal of cadmium (II) and 5.0 for removal of lead (II) for all the mushrooms. The percent removal of both the metals was found to increase with the increase in biosorbent dosage and contact time. The fitness of the biosorption data for Langmuir and Freundlich adsorption models was investigated. It was found that biosorption of cadmium (II) and lead (II) ions onto the biomass of the three mushrooms were better suitable to Langmuir than Freundlich adsorption model. P. platypus showed the highest metal uptake potential for cadmium (qmax 34.96 mg/g) whereas A. bisporus exhibited maximum potential for lead (qmax 33.78 mg/g). Milky mushroom showed the lowest metal uptake capacity for both the metals. The present data confirms that mushrooms may be used as efficient biosorbent for the removal of cadmium (II) and lead (II) ions from aqueous solution.  相似文献   

2.
The ability of manganese oxide coated zeolite (MOCZ) to adsorb copper and lead ions in single- (non-competitive) and binary- (competitive) component sorption systems was studied in fixed-bed column. The experiments were applied to quantify particle size, bed length, influent flow rate and influent metal concentration on breakthrough time during the removal of copper and lead ions from aqueous solutions using MOCZ column. Results of fixed-bed adsorption showed that the breakthrough time appeared to increase with increase of the bed length and decrease of influent metal concentration, but decreased with increase of the flow rate. The Thomas model was applied to adsorption of copper and lead ions at bed length, MOCZ particle size, different flow rate and different initial concentration to predict the breakthrough curves and to determine the characteristic parameters of the column useful for process design. The model was found suitable for describing the adsorption process of the dynamic behavior of the MOCZ column. The total adsorbed quantities, equilibrium uptakes and total removal percents of Cu(II) and Pb(II) related to the effluent volumes were determined by evaluating the breakthrough curves obtained at different conditions. The results suggested that MOCZ could be used as an adsorbent for an efficient removal of copper and lead ions from aqueous solution. The removal of metal ion was decreased when other additional heavy metal ion was added, but the total saturation capacity of MOCZ for copper and lead ions was not significantly decreased. This competitive adsorption also showed that adsorption of lead ions was decreased insignificantly when copper ions was added to the influent, whereas a dramatic decrease was observed on the adsorption of copper ions by the presence of lead ions. The removal of copper and lead ion by MOCZ columns followed the descending order: Pb(II) > Cu(II). The adsorbed copper and lead ions were easily desorbed from MOCZ with 0.5 mol l(-1) HNO3 solution.  相似文献   

3.
Various low-cost adsorbents have been used for removing Cu(II) ions from aqueous solutions for the treatment of copper containing wastewaters to remove organic compounds and color. Sawdust is an impressive adsorbent in terms of adsorption efficiency, cost and availability; hence the use of sawdust as biosorbent has been widely studied. Many earlier investigations tried to correlate the experimental data with available models or some modified empirical equations, but these results were unable to predict the values of parameters from a single equation. Artificial neural networks (ANN) are effective in modeling and simulation of highly non-liner multivariable relationships. A well-designed and very well trained network can converge even on multiple number of variables at a time without any complex modeling and empirical calculations. In this present work ANN is applied for the prediction of percentage adsorption efficiency for the removal of Cu(II) ions from aqueous solutions by sawdust. Artificial neural network model, based on multilayered partial recurrent back-propagation algorithm has been used. The performance of the network for predicting the sorption efficiency of sawdust for copper is found to be very impressive.  相似文献   

4.
Linz-Donawitz(LD) slag Geopolymer(LDSGP), a porous aluminosillicate geopolymeric adsorbent, has been synthesized from steel plant LD slag for efficient removal of Zinc(II) ions from wastewater, thus presenting a solution for converting industrial waste to adsorbent for wastewater treatment. The colloid paste of raw LD slag and the alkaline activator (10?M NaOH?+?sodium silicate (1:1 w/w)) has been cured for 3?days at low temperature to geopolymerize the calcium oxide rich LD slag. The BET surface area of LDSGP adsorbent (30.84?m2/g) has improved considerably compared to raw LDS (4.85?m2/g) and the FESEM and HRTEM images reveal the presence of micropetal and cauliflower like structures at outer surface of the adsorbent particles. The mesoporous nature of LDSGP adsorbent can be understood by analyzing N2 adsorption-desorption and pore size distribution plot. The PXRD pattern of LDSGP adsorbent powder confirms the presence of Ca2SiO4 and Ca3SiO5 in the geopolymeric matrix. Langmuir isotherm model correlates the batch adsorption data of Zn2+ ions onto LDSGP particles at 298?K, 308?K and 318?K. The maximum Zn2+ ions adsorption capacity of LDSGP is 86?mg/g at 318?K. The adsorption kinetic data is correlated with pseudo-second-order model indicating chemisorption of Zn2+ ions onto LD slag geopolymeric powder adsorbent.  相似文献   

5.
《Advanced Powder Technology》2020,31(8):3274-3286
Bentonite is widely used in various anti-seepage systems in landfills and is often exposed to leachate that are strongly acidic and have high concentrations of heavy metals. However, natural bentonite cannot resist the damage caused by cations and adsorbs harmful substances from the liquid in the process of permeation simultaneously. In order to solve this obstacle problem, we investigate the sorption characteristics of previous sodium polyacrylate bentonite (SPB), which has the low permeability and chemical resistance. A series of batch sorption experiments were performed to evaluate the degree of influence of parameters (contact time, pH, temperature, and concentration of Pb(II)). The resultant SPB samples were characterized using thermogravimetric analysis and scanning electron microscopy. The results indicated that negatively charged hydrophilic group (carboxyl group, -COOH) of sodium polyacrylate formed a directional arrangement and wrapped the layers of bentonite. This makes the polyacrylate sodium membrane to allow water to pass through easily and block the cations, thereby protecting bentonite from the cation exchange reaction. Compared with raw bentonite (RB), the sorption of Pb(II) of SPB was significantly improved in acid, and the maximum sorption capacity increased by about 20%, reaching 72.89 mmol/100 g. Thus, SPB is an ideal impermeable material to block the leachate and it exhibits low permeability, chemical resistance, and high adsorption for heavy metals.  相似文献   

6.
Chlorophenols in water are resistant to biological oxidation and they have to be destroyed by chemical oxidation. In the present work, Fe(III), Co(II) and Ni(II) incorporated MCM41 mesoporous solids were used as catalysts for oxidation of 2,4,6-trichlorophenol in water with or without the oxidant, H2O2. The catalysts were prepared by impregnation and were characterized by XRD and FTIR measurements. The parent MCM41, Fe(III), Co(II) and Ni(II) impregnated MCM41 had cation exchange capacity of 20.5, 25.5, 24.2, 26.0 mequiv./100 g, respectively. The catalysts were used after calcination at 773–873 K for 5 h. The reactions were carried out in a high pressure stirred reactor at 0.2 MPa (autogenous) and 353 K under various reaction conditions. The conversion achieved with Fe(III), Co(II) and Ni(II) incorporated MCM41 in 5 h is respectively 59.4, 50.0 and 65.6% with 2,4,6-TCP:H2O2 molar ratio of 1:1, and 60.2, 60.9 and 68.8% in absence of H2O2. The oxidation has a first order rate coefficient of (1.2–4.8) × 10−3 min−1. The results show that introduction of Fe(III), Co(II) and Ni(II) into MCM-41 through impregnation produces very effective catalysts for wet oxidation of 2,4,6-trichlorophenol.  相似文献   

7.
The preparation, characterization, and sorption properties for Cu(II) and Pb(II) of manganese oxide coated sand (MOCS) were investigated. A scanning electron microscope (SEM), X-ray diffraction spectrum (XRD) and BET analyses were used to observe the surface properties of the coated layer. An energy dispersive analysis of X-ray (EDAX) and X-ray photoelectron spectroscopy (XPS) were used for characterizing metal adsorption sites on the surface of MOCS. The quantity of manganese on MOCS was determined by means of acid digestion analysis. The adsorption experiments were carried out as a function of solution pH, adsorbent dose, ionic strength, contact time and temperature. Binding of Cu(II) and Pb(II) ions with MOCS was highly pH dependent with an increase in the extent of adsorption with the pH of the media investigated. After the Cu(II) and Pb(II) adsorption by MOCS, the pH in solution was decreased. Cu(II) and Pb(II) uptake were found to increase with the temperature. Further, the removal efficiency of Cu(II) and Pb(II) increased with increasing adsorbent dose and decreased with ionic strength. The pseudo-first-order kinetic model, pseudo-second-order kinetic model, intraparticle diffusion model and Elovich equation model were used to describe the kinetic data and the data constants were evaluated. The pseudo-second-order model was the best choice among all the kinetic models to describe the adsorption behavior of Cu(II) and Pb(II) onto MOCS, suggesting that the adsorption mechanism might be a chemisorption process. The activation energy of adsorption (E(a)) was determined as Cu(II) 4.98 kJ mol(-1) and Pb(II) 2.10 kJ mol(-1), respectively. The low value of E(a) shows that Cu(II) and Pb(II) adsorption process by MOCS may involve a non-activated chemical adsorption and a physical sorption.  相似文献   

8.
Titanate nanotubes (TNs) with specific surface areas of 272.31 m(2)g(-1) and pore volumes of 1.264 cm(3)g(-1) were synthesized by alkaline hydrothermal method. The TNs were investigated as adsorbents for the removal of Pb(II) and Cd(II) from aqueous solutions. The FT-IR analysis indicated that Pb(II) and Cd(II) adsorption were mainly ascribed to the hydroxyl groups in the TNs. Batch experiments were conducted by varying contact time, pH and adsorbent dosage. It was shown that the initial uptake of each metal ion was very fast in the first 5 min, and adsorption equilibrium was reached after 180 min. The adsorption of Pb(II) and Cd(II) were found to be maximum at pH in the range of 5.0-6.0. The adsorption kinetics of both metal ions followed the pseudo-second-order model. Equilibrium data were best fitted with the Langmuir isotherm model, and the maximum adsorption capacities of Pb(II) and Cd(II) were determined to be 520.83 and 238.61 mg g(-1), respectively. Moreover, more than 80% of Pb(II) and 85% of Cd(II) adsorbed onto TNs can be desorbed with 0.1M HCl after 3h. Thus, TNs were considered to be effective and promising materials for the removal of both Pb(II) and Cd(II) from wastewater.  相似文献   

9.
In this study, organobentonites were prepared by modification of bentonite with various cationic surfactants, and were used to remove As(V) and As(III) from aqueous solution. The results showed that the adsorption capacities of bentonite modified with octadecyl benzyl dimethyl ammonium (SMB3) were 0.288 mg/g for As(V) and 0.102 mg/g for As(III), which were much higher compared to 0.043 and 0.036 mg/g of un-modified bentonite (UB). The adsorption kinetics were fitted well with the pseudo-second-order model with rate constants of 46.7 × 10−3 g/mg h for As(V) and 3.1 × 10−3 g/mg h for As(III), respectively. The maximum adsorption capacity of As(V) derived from the Langmuir equation reached as high as 1.48 mg/g, while the maximum adsorption capacity of As(III) was 0.82 mg/g. The adsorption of As(V) and As(III) was strongly dependent on solution pH. Addition of anions did not impact on As(III) adsorption, while they clearly suppressed adsorption of As(V). In addition, this study also showed that desorbed rates were 74.61% for As(V) and 30.32% for As(III), respectively, after regeneration of SMB3 in 0.1 M HCl solution. Furthermore, in order to interpret the proposed absorption mechanism, both SMB3 and UB were extensively characterized using scanning electron microscopy (SEM), X-ray diffraction (XRD) and Fourier transform infrared (FTIR) analyses.  相似文献   

10.
Adsorption of lead(II) ions onto 8-hydroxy quinoline-immobilized bentonite   总被引:1,自引:0,他引:1  
In this study, the immobilization of 8-hydroxy quinoline onto bentonite was carried out and it was then used to investigate the adsorption behavior of lead(II) ions from aqueous solutions. The changes of the parameters of pH, contact time, initial lead(II) ions concentration and temperature were tested in the adsorption experiments. The XRD, FTIR, elemental and thermal analyses were done to observe the immobilization of 8-hydroxy quinoline onto natural bentonite. The adsorption was well described by the Langmuir adsorption isotherm model at all studied temperatures. The maximum adsorption capacity was 142.94mgg(-1) from the Langmuir isotherm model at 50 degrees C. The thermodynamic parameters implied that the adsorption process is spontaneous and endothermic. The kinetic data indicate that the adsorption fits well with the pseudo-second-order kinetic model. 8-Hydroxy quinoline-immobilized bentonite can be used as well respective adsorbent for the removal of the heavy metal pollutants according to the results.  相似文献   

11.
Bentonite is rich in montmorillonite, which is a nanostructured and nanoporous member of smectite group. Mineralogical and physicochemical properties of bentonites play a key role in choosing appropriate bentonites for different applications. Scanning electron microscopy (SEM) reveals the morphological form and size of mineral phase of the studied bentonite samples. X-ray diffraction (XRD) analysis showed that the studied bentonites predominantly consist of montmorillonites accompanying other impurities such as quartz, calcite, and plagio feldspar. The amount of organic components CHNO (carbon, hydrogen, nitrogen, and oxygen) in the samples was so low that it had no significant effect on the result of XRF analyses. X-ray fluorescence (XRF) analysis showed that there was a large amount of Al2O3 in sample ES3 and this large amount of Al2O3 indicates a greater amount of montmorillonite in this sample compared to that in sample GH1. Due to a larger amount of CaO, the type of GH1 montmorillonite is Ca-montmorillonite and due to a lower amount of CaO compared to that of Na2O the type of ES3 montmorillonite is Na-montmorillonite. This study aims at examining a novel insight to characterize bentonites to find out the mineralogical and physicochemical properties of studied samples.  相似文献   

12.
Bentonites contain a large amount of nanoporous and nanostructured montmorillonite, which is the dominant mineral determining the adsorptive properties of bentonites. In this study, the analyses of the characterization of bentonites for adsorption application include cation exchange capacity (CEC) measurements, swell index, dry screen (granulometric) analysis, x-ray diffraction (XRD), BET-BJH surface area and pore size distribution measurements, and scanning electron microscopy (SEM). The adsorption of chromium(III) from a 0.01 N Cr(III) solution using bentonites has been studied. The results showed that BNT3 and BNT2 have high CEC values of 100 and 95 mEq/100 g and swell index values of 30 and 24 mm, respectively. The high amounts of CEC and the swell index with high amount of granulometric (particles finer than 36 µm) values indicate that the amount of clay minerals (motmorillonite) is very high. Successful chromium removal efficiencies changed from 94.5% for BNT4 to 99.4% for BNT3. The maximum Cr(III) removal of adsorbents decreased in the following order: BNT3 > BNT2 > BNT5 > BNT1 > BNT4. The removal of chromium was correlated with the variation of bentonite types. This study aims at investigating the effects of different bentonite types on the removal of Cr(III) from synthetic wastewater using low-cost bentonites.  相似文献   

13.
Amorphous iron(III) phosphate has been synthesized by solid-state reaction at room temperature and was characterized by several methods. The non-crystalline sample displayed the particle size within the range of 100-200 nm, and it had a strong fluorescence emission peak centered at 306.6 nm. Moreover, its absorption properties for Hg(II) and Ag(I) heavy metal ions have been investigated. The experimental research results revealed that its excellent absorption capacity for Hg(II) and Ag(I) could reach to 1.831 mmol/g and 1.354 mmol/g, respectively, at pH = 5.98 and the absorption time t = 6 h. The absorption properties for Hg(II) were usually stronger that those for Ag(I).  相似文献   

14.
The surface-initiated atom transfer radical polymerization (ATRP) was used to successfully prepare the aminated cotton and polyacrylic acid sodium (P(AA-Na))-grafted cotton for the efficient removal of Cu(II) and Pb(II) from aqueous solution in this study. The modified cotton surfaces were characterized by scanning electron microscopy (SEM), Fourier transform infrared (FTIR) and X-ray photoelectron spectroscopy (XPS). The grafted long polymers with high density of amine and carboxyl groups on the cotton surfaces were responsible for the enhanced adsorption of heavy metals. The sorption behaviors including sorption kinetics, isotherms and pH effect were investigated. The sorption equilibrium of Cu(II) and Pb(II) was achieved within 1 h on the P(AA-Na)-grafted cotton, much faster than 8 h on the aminated cotton. According to the Langmuir fitting, the maximum sorption capacities of Cu(II) and Pb(II) on the P(AA-Na)-grafted cotton were 2.45 and 2.44 mmol/g, respectively, higher than many adsorbents reported in the literature. The P(AA-Na)-grafted cotton had better adsorption behaviors for Cu(II) and Pb(II) than the aminated cotton.  相似文献   

15.
New organometallic precursors for the metal organic chemical vapor deposition (MOCVD) of copper, (hfac)Cu(I)(MP) (hfac=hexafluoroacetylacetonate, MP=4-methyl-1-pentene) and (hfac)Cu(I)(DMB) (DMB=3,3-dimethyl-1-butene) were studied. Copper films could be deposited at the precursor vaporization temperature of 45 and 35°C. The deposition rate was about four to seven times higher than previously reported precursors such as (hfac)Cu(VTMS) (VTMS=vinyltrimethylsilane), (hfac)Cu(ATMS) (ATMS=allyltrimethylsilane) and (hfac)Cu(VCH) (VCH=vinylcyclohexane). The copper films deposited from these two precursors had a resistivity of about 2.0 μΩ cm in the deposition temperature range of 150 to 200°C.  相似文献   

16.
A novel magnetic Cu(II) ion imprinted composite adsorbent (Cu(II)-MICA) was synthesized, characterized and applied for the selective removal Cu(II) from aqueous solution in the batch system. The adsorption-desorption and selectivity characteristics were investigated. The maximum adsorption occurred at pH 5-6. The equilibrium time was 6.0h, and a pseudo-second-order model could best describe adsorption kinetics. The adsorption equilibrium data fit Langmuir isotherm equation well with a maximum adsorption capacity of 46.25mg/g and Langmuir adsorption equilibrium constant of 0.0956L/mg at 298K. Thermodynamic parameters analysis predicted an exothermic nature of adsorption and a spontaneous and favourable process that could be mainly governed by physisorption mechanism. The relative selectivity coefficients of Cu(II)-MICA for Cu(II)/Zn(II) and Cu(II)/Ni(II) were 2.31, 2.66 times greater than the magnetic non-imprinted composite adsorbent (MNICA). Results suggested that Cu(II)-MICA was a material of efficient, low-cost, convenient separation under magnetic field and could be reused five times with about 14% regeneration loss.  相似文献   

17.
The biosorption characteristics of Pb(II) and Cd(II) ions from aqueous solution using the green alga (Ulva lactuca) biomass were investigated as a function of pH, biomass dosage, contact time, and temperature. Langmuir, Freundlich and Dubinin-Radushkevich (D-R) models were applied to describe the biosorption isotherm of the metal ions by U. lactuca biomass. Langmuir model fitted the equilibrium data better than the Freundlich isotherm. The monolayer biosorption capacity of U. lactuca biomass for Pb(II) and Cd(II) ions was found to be 34.7mg/g and 29.2mg/g, respectively. From the D-R isotherm model, the mean free energy was calculated as 10.4kJ/mol for Pb(II) biosorption and 9.6kJ/mol for Cd(II) biosorption, indicating that the biosorption of both metal ions was taken place by chemisorption. The calculated thermodynamic parameters (DeltaG degrees , DeltaH degrees and DeltaS degrees ) showed that the biosorption of Pb(II) and Cd(II) ions onto U. lactuca biomass was feasible, spontaneous and exothermic under examined conditions. Experimental data were also tested in terms of biosorption kinetics using pseudo-first-order and pseudo-second-order kinetic models. The results showed that the biosorption processes of both metal ions followed well pseudo-second-order kinetics.  相似文献   

18.
In this study, the biosorption of nickel(II) ions on Enteromorpha prolifera, a green algae, was investigated in a batch system. The single and combined effects of operating parameters such as initial pH, temperature, initial metal ion concentration and biosorbent concentration on the biosorption of nickel(II) ions on E. prolifera were analyzed using response surface methodology (RSM). The optimum biosorption conditions were determined as initial pH 4.3, temperature 27 degrees C, biosorbent concentration 1.2 g/L and initial nickel(II) ion concentration 100 mg/L. At optimum biosorption conditions, the biosorption capacity of E. prolifera for nickel(II) ions was found to be 36.8 mg/g after 120 min biosorption. The Langmuir and Freundlich isotherm models were applied to the equilibrium data and defined very well both isotherm models. The monolayer coverage capacity of E. prolifera for nickel(II) ions was found as 65.7 mg/g. In order to examine the rate limiting step of nickel(II) biosorption, such as the mass transfer and chemical reaction kinetics, the intraparticle diffusion model, external diffusion model and the pseudo second order kinetic model were tested with the experimental data. It was found that for both contributes to the actual biosorption process. The pseudo second order kinetic model described the nickel(II) biosorption process with a good fitting.  相似文献   

19.
Waste water of copper mines and copper processing plant contains both copper and selenium ions with other contaminants. In this paper simultaneous photoreductive removal of copper (II) and selenium (IV) is studied for the first time using spherical binary oxide photocatalysts under visible light. All the synthesized materials are found to be mesoporous in nature with reasonably high surface area. Among a range of hole scavengers, only EDTA (ethylene diamine tetraacetic acid) and formic acid are found to be the most active for the reduction reaction. A comparative study is carried out using both the hole scavengers varying reaction time, concentration, pH etc. For a single contaminant, EDTA is found to be the best for Cu(II) reduction whereas formic acid is the best for Se(IV) reduction. In a mixed solution both EDTA and formic acid perform very well under visible light irradiation. Highest photocatalytic reduction in a mixed solution is observed at pH 3. Among all the synthesized materials, TiZr-10 performs as the best photocatalyst for both Cu(II) and Se(IV) reduction. However under UV light, Degussa P25 performs slightly better than TiZr-10. Present study shows that 100 ppm of mixed solution can be removed under visible light in 40 min of reaction using TiZr-10 as catalyst. Photodeposited material is found to be copper selenide rather than pure copper and selenium metal. This indicates that the waste water containing copper and selenium ions can be efficiently treated under visible or solar light.  相似文献   

20.
Alternanthera philoxeroides biomass, a type of freshwater macrophyte, was used for the sorptive removal of Ni(II), Zn(II) and Cr(VI) from aqueous solutions. Variables of the batch experiments include solution pH, contact time, particle size and temperature. The biosorption capacities are significantly affected by solution pH. Higher pH favors higher Ni(II), Zn(II) removal, whereas higher uptake of Cr(VI) is observed as the pH is decreased. A two-stage kinetic behavior is observed in the biosorption of Ni(II), Zn(II) and Cr(VI): very rapid initial biosorption in a few minutes, followed by a long period of a slower uptake. It is noted that an increase in temperature results in a higher Ni(II), Zn(II) and Cr(VI) loading per unit weight of the sorbent. Decreasing the particle sizes of the Alternanthera philoxeroides biomass leads to an increase in the Ni(II), Zn(II) and Cr(VI) uptake per unit weight of the sorbent. All isothermal data are fairly well fitted with Langmuir equations. The thermodynamic parameter, DeltaG degrees, were calculated. The negative DeltaG degrees values of Cr(VI), Ni(II) and Zn(II) at various temperatures confirm the adsorption processes are spontaneous.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号