首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A previously undescribed, H2-oxidizing CO2-reducing acetogenic bacterium was isolated from gut contents of the wood-feeding termite, Pterotermes occidentis. Cells of representative strain APO-1 were strictly anaerobic, Gram-negative, endospore-forming motile rods which measured 0.30–0.40×6–60 m. Cells were catalase positive, oxidase negative, and had 51.5 mol percent G+C in their DNA. Optimum conditions for growth on H2+CO2 were at 30–33°C and pH (initial) 7.8, and under these conditions cells formed acetate according to the equation: 4 H2+2 CO2CH3COOH+2 H2O. Other energy sources supporting good growth of strain APO-1 included glucose, ribose, and various organic acids. Acetate and butyrate were major fermentation products from most organic compounds tested, however propionate, succinate, and 1,2-propanediol were also formed from some substrates. Based on comparative analysis of 16S rRNA nucleotide sequences, strain APO-1 was related to, but distinct from, members of the genus Sporomusa. Moreover, physiological and morphological differences between strain APO-1 and the six known species of Sporomusa were significant. Consequently, it is proposed herewith that a new genus, Acetonema, be established with strain APO-1 as the type strain of the new species, Acetonema longum. A. longum may contribute to the nutrition of P. occidentis by forming acetate, propionate and butyrate, compounds which are important carbon and energy sources for termites.  相似文献   

2.
Two sulfate-reducing bacteria (SRB) were isolated from a mixed culture enriched with benzoate obtained from gut homogenate of the soil-feeding higher termite, Cubitermes speciosus. The organisms were vibrioid rods, staining Gram-negative, which performed incomplete substrate oxidation. They differed in several features. The smaller one, strain STp, was motile with a single polar flagellum. This strain differed from Desulfovibrio desulfuricans only by its inability to oxidize malate and pentanol. The bigger one, strain STg, differed from Desulfovibrio giganteus only by its nonmotility and a lower length. It is the first evidence of the presence of SRB in termite gut.  相似文献   

3.
H2-oxidizing CO2-reducing acetogenic bacteria were isolated from gut contents of Nasutitermes nigriceps termites. Isolates were strictly anaerobic, Gram negative, endospore-forming, straight to slightly curved rods (0.5–0.8×2–8 m) that were motile by means of lateral flagella. Cells were oxidase negative, but catalase positive and possessed a b-type cytochrome(s) associated with the cell membrane. Cells grew anaerobically with H2+CO2 as energy source and catalyzed a total synthesis of acetate from this gas mixture. H2 uptake by a representative isolate (strain JSN-2) displayed a K m=6 M and V max=380 nmol x min-1 x mg protein-1. Other substrates used as energy sources for growth and acetogenesis included CO, methanol, betaine, trimethoxybenzoate, and various other organic acids. Succinate was also fermented, but propionate was formed from this substrate instead of acetate. Of a variety of sugars and sugar alcohols tested, only mannitol supported growth. Cells grew optimally at 30° C and pH 7.2 and required yeast extract or a source of amino acids (e.g. Casamino acids) for good growth. During initial enrichment and isolation, cells appeared sensitive to various reducing agents commonly employed in media for anaerobes. The DNA base composition of strain JSN-2 was 48.6 mol% G+C. On the bases of cell morphology, substrate utilization spectrum, and DNA base composition, strain JSN-2 is here-with proposed as the type strain of the new species Sporomusa termitida.Journal article no. 12513 from the Michigan Agricultural Experiment Station  相似文献   

4.
A gram-positive, motile, rod-shaped, strictly anaerobic, sporulating bacterium was isolated from an enrichment initiated with mullet gut contents. The organism grew optimally at 30°C and pH6.5, and at a salinity of 1–103. Out of a variety of polysaccharides tested as growth substrates, only alginate supported growth in either semidefined or complex culture medium. The organism also grew on a variety of mono- and disaccharides. Moles product per 100mol of alginate monomer degraded were: acetate, 186; ethanol, 19; formate, 54; and CO2, 0.19. Moles product per 100mol of hexose in cellobiose or glucose degraded were: acetate, 135; ethanol,61; formate, 63: and CO2, 61. Hydrogen was not detectable during the incubations (detection limit, <10-5atm) and propionate, butyrate, lactate, or succinate were not produced as fermentation end products (<2 mol per 100 mol of monomer). The G+C content of DNA from the bacterium was 30.2±0.3 mol%, and the cell walls contained the peptidoglycan component meso-diaminopimelic acid. A phylogenetic analysis of the 16S rDNA sequence indicated that the organism grouped closely with members of the RNA-DNA homology group 1 of the genus Clostridium. However, it differed from other species of the genus with regard to morphology, growth temperature optimum, substrate range, and fermentation pattern and is therefore designated as a new species of Clostridium; the type strain is A-1 (DSM 8605).  相似文献   

5.
Cell suspensions of H2/CO2-grown Sporomusa termitida catalyzed an H2-supported synthesis of acetate from CO2 at rates of about 1 mol acetate x h-1 x mg protein-1. Cells pre-grown on methanol, mannitol, lactate, or glycine also displayed H2-supported acetogenesis from CO2, although at rates 5–85% that of H2/CO2-grown cells. With methanol-grown cell suspensions: the presence of methanol greatly stimulated the rate of H2-supported conversion of 14CO2 to 14C-acetate (which became labeled mainly in the COOH-group); and like-wise the presence of H2 stimulated the conversion of 14CH3OH+CO2 to 14C-acetate (which became labeled mainlyan the CH3-group). Analogous stimulatory effects were observed for cell suspensions pre-grown on methanol + CO2+H2. Furthermore, when H2 (+CO2) was included as a growth substrate with either methanol or lactate: both substrates were used simultaneously; there was no diauxie in the growth of cells or in acetate production; and the molar growth yield of S. termitida was close to that predicted from summation of the yields observed when grown with each substrate alone. These data indicated that S. termitida can grow by mixotrophy, i.e. by the simultaneous use of H2/CO2 and organic compounds for energy. Results are discussed in light of the ability of H2/CO2 acetogens to outprocess methanogens in H2 consumption in the hindgut fermentation of wood-feeding termites.  相似文献   

6.
A new H2/CO2-utilizing acetogenic bacterium was isolated from the feces of a non-methane-excreting human subject. The two strains S5a33 and S5a36 were strictly anaerobic, gram-positive, non-sporulating coccobacilli. The isolates grew autotrophically by metabolizing H2/CO2 to form acetate as sole metabolite and were also able to grow heterotrophically on a variety of organic compounds. The major end product of glucose and fructose fermentation was acetate; the strains also formed ethanol, lactate and, to a lesser extent, isobutyrate and isovalerate. The G+C content of DNA of strain S5a33 was 45.2 mol%. 16S rRNA gene sequencing demonstrated that the two acetogenic isolates were phylogenetically identical and represent a new subline within Clostridium cluster XIVa. Based on phenotypic and phylogenetic considerations, a new species, Ruminococcus hydrogenotrophicus, is proposed. The type strain of R. hydrogenotrophicus is S5a33 (DSM 10507). Furthermore, H2/CO2 acetogenesis appeared to be a common property of most of the species phylogenetically closely related to strain S5a33 (Clostridium coccoides, Ruminococcus hansenii, and Ruminococcus productus). Received: 11 April 1996 / Accepted: 11 June 1996  相似文献   

7.
A new species of sporulating saccharolytic anaerobe, designated as Clostridium quinii sp. nov., is described. A gram-positive strain BS1, was isolated from the granular metanogenic sludge (UASB) from a waste-water treatment plant at a sugar refinery. The strain exhibits a series of morphological stages, developing from a spore to a small rod to a motile rod (peritrichous flagella) in the exponential growth phase, and then swelling to form cigar-shaped cells, exhibiting tumbling movements, in the late exponential growth phase before finally becoming large nonmotile ovoid cells in the stationary phase. Swelling occurs as a result of glucose being taken up and stored as a glycogen-like substance. The main fermentation products when growing on glucose is H2, CO2, formate, acetate and ethanol as well as small amounts of butyrate during exponential growth. Lactate is formed during the stationary phase, when glucose is abundant. Optimal conditions for growth is 40–45°C and pH of around 7.4. The type strain BS1 contains 28.0% mol G+C.  相似文献   

8.
Two strains of obligately anaerobic, thermophilic spirochetes were isolated from cyanobacterial mat samples collected at freshwater hot springs in Oregon and Utah, USA. The isolates grew optimally between 48° and 52°C, and did not grow at 25° or 60°C. Both strains fermented various pentoses, hexoses, and disaccharides. Amino acids or cellulose did not serve as fermentable substrates for growth. H2, CO2, acetate, and lactate were end products of d-glucose fermentation. On the basis of physiological characteristics, guanine + cytosine content of DNA, and comparisons of 16S ribosomal RNA sequences, it was concluded that the two isolates were representatives of a novel species of Spirochaeta for which the name Spirochaeta caldaria is proposed. One of the two strains was grown in coculture with a thermophilic cellulolytic bacterium (Clostridium thermocellum) in a medium containing cellulose as the only fermentable substrate. In the coculture cellulose was broken down at a faster rate than in the clostridial monoculture. The results are consistent with the suggestion that interactions between cellulolytic bacteria and non-cellulolytic spirochetes enhance cellulose breakdown in natural environments in which cellulose-containing plant material is biodegraded.  相似文献   

9.
Abstract A method is proposed that allows the enrichment and most probable number estimation of H2/CO2-utilizing acetogenic bacteria. It is based on the difference in acetate production for serial dilutions incubated under either a test H2/CO2 (4:1), or a control N2/CO2 (4:1) headspace atmosphere. A nutritionally non-selective medium was used, containing bromoethane-sulfonic acid as inhibitor of methanogenic archaea and 10% pre-incubated clarified rumen fluid. Acetogenic bacteria were enumerated in rumen and hindgut contents of animals and in human feces. They ranged from below 102 to above 108 per gram wet weight gut content and their population levels were the highest in the absence of methanogenesis. The method described therein should prove useful to better understand the diversity and ecological importance of dominant gut acetogens.  相似文献   

10.
Five strains of acetogenic bacteria were isolated by selective enrichment from the rumen of a mature Hereford crossbred steer fed a typical high forage diet. Suspensions of rumen bacteria, prepared from contents collected 7 h postfeeding, blended and strained through cheesecloth, were incubated in a minimal medium containing 10% clarified rumen fluid under either H2:CO2 (80:20) or N2:CO2 (80:20) headspace atmosphere. The selection criterion was an increment of acetate in the enrichments incubated under H2:CO2. Periodically, the enrichment broths were plated onto agar media and presumed acetogenic bacteria subsequently were screened for acetate production. Selected acetogenic bacteria utilized a pressurized atmosphere of H2:CO2 to form acetate in quantities 2 to 8-fold higher than when grown under N2:CO2. All presumptive acetogenic isolates were derived from either the 10-7 or 10-8 dilutions of rumen contents. All 5 strains were Gram-positive rods, and all utilized formate, glucose and CO. One strain required, and all were stimulated by, rumen fluid. No spores were observed with phase-contast microscopy and two strains were motile. No methane was detected in the headspace of pure cultures grown under either gas phase. The isolation of these bacteria indicates that acetogenic bacteria are inhabitants of the rumen of the bovine fed a typical diet and suggests that they may be participants in the utilization of hydrogen in the rumen ecosystem. Strain 139B (= ATCC 43876) is named Acetitomaculum ruminis gen. nov., sp. nov. and is the type strain of this new species. Portions of this work were presented previously (Greening RC, Leedle JAZ (1987) Abstr Annu Meet Am Soc Microbiol I 131, pp 194)  相似文献   

11.
Abstract Two strains of H2 / CO2-using acetogenic bacteria were isolated from the rumen of suckling lambs. Both strains displayed a coccobacillar morphology and possessed a Gram-positive type cell wall. Numerous organic substrates, including some O-methylated aromatic compounds, were used heterotrophically. 16S rRNA gene sequencing demonstrated that the two acetogenic isolates were phylogenetically identical and represent a new subline within Clostridium cluster XIVa. Based on phenotypic and phylogenetic considerations a new species, Ruminococcus schinkii sp. nov., is proposed.  相似文献   

12.
Strain X4 was isolated several years ago from an anaerobic mesophilic plant treating vegetable cannery waste waters. It was the first example of propionic fermentation from ethanol. Morphologic and physiologic characterizations of the strain are presented here. This strain is described as type strain of a new species, Clostridium neopropionicum sp. nov. Whole cells of strain X4 ferment [1-13C]ethanol and CO2 to [2-13C]propionate, [1-13C]acetate and [2-13C]propanol, suggesting the absence of a randomizing pathway during the propionate formation. Enzymes involved in this fermentation were assayed in cell-free extracts of cells grown with ethanol as sole substrate. Alcohol dehydrogenase, aldehyde dehydrogenase, phosphate acetyl transferase, acetate kinase, pyruvate synthase, lactate dehydrogenases, and the enzymes of the acrylate pathway were detected at activities sufficient to be involved in ethanol fermentation. The same pathway may be used for the degradation of lactate or acrylate to acetate.  相似文献   

13.
Two new mesophilic, sporeforming, gram-positive, strictly anaerobic, rod-shaped bacteria were isolated which utilized betaine in the Stickland reaction. Strain M1 was obtained from pasteurized hypersaline sediments. Cells were motile rods and formed spherical terminal spores. Betaine was used with hydrogen and several amino acids as electron donors. In addition, several carbohydrates served as substrates. Growth required 1.5% NaCl with an optimum at 6.0% NaCl. The guanine plus cytosine content of the DNA was 26.9%. This strain is described as a new species, Clostridium halophilum.Strain W6 was isolated from marine sediments. Cells were motile rods and formed ovoid, subterminal spores. Betaine was used with hydrogen and several amino acids as electron donors. Carbohydrates were not fermented. Growth optimum was at 1.0% NaCl. The guanine plus cytosine content of the DNA was 26.1%. This strain is described as a new species, Clostridium litorale.Non standard abbreviations DMG N,N-dimethylglycine - TMA trimethylamine - PY peptone-yeast extract - PYG peptone-yeast extract-glucose  相似文献   

14.
Strain T2–7, a 5-aminovalerate-fermenting bacterium previously classified as Clostridium aminovalericum, was further characterized, both physiologically and phylogenetically. Comparative sequencing analysis of the almost complete 16S rDNA revealed that strain T2–7 forms a distinct lineage within a phylogenetically coherent cluster of gram-positive bacteria currently assigned to the genus Clostridium. Strain T2–7 grew with 5-aminovalerate, 5-hydroxyvalerate, 4-hydroxybutyrate, vinylacetate, and crotonate, and required yeast extract and l-cysteine for growth. Other substrates were not utilized. The fermentation products, depending on the growth substrate, were ammonia, acetate, propionate, butyrate, and valerate. Sulphur was reduced by a mechanism not linked to energy conservation. Other acceptors were not utilized. Cells were gram-positive pointed-ended ovals, motile by means of two subpolar flagella, and possessed a gram-positive cell wall structure with an S-layer of hexagonally arranged subunits of 18.5 nm diameter. The DNA mol% G+C was 41.5. Strain T2–7 (DSM 6836) is proposed as the type strain of a new species, Clostridium viride sp. nov. Dedicated to H. A. Barker on the occasion of his 87th birthday  相似文献   

15.
Two Gram-positive, moderately halophilic bacteria, designated strains 29CMIT and 53CMI, were isolated from salted hides. Both strains were non-motile, strictly aerobic cocci, growing in the presence of 3–25% (w/v) NaCl (optimal growth at 7.5–12.5% [w/v] NaCl), between pH 5.0 and 10.0 (optimal growth at pH 7.5) and at temperatures between 15 and 40 °C (optimal growth at 37 °C). Phylogenetic analysis based on 16S rRNA gene sequence comparison showed that both strains showed a similarity of 98.7% and were closely related to species of the genus Salimicrobium, within the phylum Firmicutes. Strains 29CMIT and 53CMI exhibited 16S rRNA gene sequence similarity values of 97.9–97.6% with Salimicrobium album DSM 20748T, Salimicrobium halophilum DSM 4771T, Salimicrobium flavidum ISL-25T and Salimicrobium luteum BY-5T. The DNA G+C content was 50.7 mol% and 51.5 mol% for strains 29CMIT and 53CMI, respectively. The DNA–DNA hybridization between both strains was 98%, whereas the values between strain 29CMIT and the species S. album CCM 3517T, S. luteum BY-5T, S. flavidum ISL-25T and S. halophilum CCM 4074T were 45%, 28%, 15% and 10%, respectively, showing unequivocally that strains 29CMIT and 53CMI constitute a new genospecies. The major cellular fatty acids were anteiso-C15:0, anteiso-C17:0, iso-C15:0 and iso-C14:0. The main respiratory isoprenoid quinone was MK-7, although small amounts of MK-6 were also found. The polar lipids of the type strain consist of diphosphatidylglycerol, phosphatidylglycerol, one unidentified phospholipid and one glycolipid. The peptidoglycan type is A1γ, with meso-diaminopimelic acid as the diagnostic diamino acid. On the basis of the phylogenetic analysis, and phenotypic, genotypic and chemotaxonomic characteristics, we propose strains 29CMIT and 53CMI as a novel species of the genus Salimicrobium, with the name Salimicrobium salexigens sp. nov. The type strain is 29CMIT (=CECT 7568T = JCM 16414T = LMG 25386T).  相似文献   

16.
An obligatory anaerobic, Gram-positive, rod-shaped organism was isolated from faeces of a healthy human donor. It was characterized using biochemical, phenotypic and molecular taxonomic methods. The organism produced acetate, lactate, and ethanol as the major products of glucose fermentation. The G + C content was 53 mol%. Based on comparative 16S rRNA gene sequencing, the unidentified bacterium is a member of the Clostridium subphylum of the Gram-positive bacteria, and most closely related to species of the Clostridium coccoides cluster (rRNA cluster XIVa) [M.D. Collins et al., The phylogeny of the genus Clostridium: proposal of five new genera and eleven new species combinations, Int. J. Syst. Bacteriol. 44 (1994) 812-826]. Clostridium bolteae and Clostridium clostridioforme were identified as the most closely related described species. A 16S rRNA sequence divergence value of > 3% suggested that the isolate represents a new species. This was also supported by the gyrase-encoding gyrB gene sequences. Based on these findings, we propose the novel bacterium from human faeces to be classified as a new species, Clostridium asparagiforme. The type strain of C. asparagiforme is N6 (DSM 15981 and CCUG 48471).  相似文献   

17.
Five strains of sulfate-reducing bacteria were isolated from the highest positive dilutions of a most probable number (MPN) series supplemented with lactate and inoculated with sediments from the oligotrophic Lake Stechlin. The isolates were endospore-forming and were motile by means of laterally inserted flagella. They stained Gram-negative and contained b-type cytochromes. CO difference spectra indicated the presence of P582 as a sulfite reductase. Phylogenetic analyses of the 16S rDNA sequences revealed that the isolates were very closely affiliated with the genus Sporomusa. However, sulfate and amorphous Fe(OH)3, but not sulfite, elemental sulfur, MnO2, or nitrate were used as terminal electron acceptors. Homoacetogenic growth was found with H2/CO2 gas mixture, formate, methanol, ethanol, and methoxylated aromatic compounds. The strains grew autotrophically with H2 plus CO2 in the presence or absence of sulfate. Formate, butyrate, several alcohols, organic acids, carbohydrates, some amino acids, choline, and betaine were also utilized as substrates. The growth yield with lactate and sulfate as substrate was 7.0 g dry mass/mol lactate and thus two times higher than in sulfate-free fermenting cultures. All isolates were able to grow in a temperature range of 4–37°C. Physiologically and by the presence of a Gram-negative cell wall, the new isolates resemble known Desulfosporosinus species. However, phylogenetically they are affiliated with the Gram-negative genus Sporomusa belonging to the Selenomonas subgroup of the Firmicutes. Therefore, the new isolates reveal a new phylogenetic lineage of sulfate-reducing bacteria. A new genus and species, Desulfosporomusa polytropa gen. nov., sp. nov. is proposed.Dedicated to Prof. H. G. Schlegel on the occasion of his 80th birthday.  相似文献   

18.
An anaerobic, dehalogenating, sulfate-reducing bacterium, strain DCB-1, is described and nutritionally characterized. The bacterium is a Gram-negative, nonmotile, non-sporeforming large rod with an unusual morphological feature which resembles a collar. The microorganism reductively dehalogenates meta substituted halobenzoates and also reduces sulfate, sulfite and thiosulfate as electron acceptors. The bacterium requires nicotinamide, 1,4-naphthoquinone and thiamine for optimal growth in a defined medium. The microorganism can grow autotrophically on H2:CO2 with sulfate or thiosulfate as terminal electron acceptors. It can also grow heterotrophically with pyruvate, several methoxybenzoates, formate plus sulfate or benzoate plus sulfate. It ferments pyruvate to acetate and lactate in the absence of other electron acceptors. The bacterium is inhibited by MoO inf4 sup2- or SeO inf4 sup2- as well as tetracycline, chloramphenicol, kanamycin or streptomycin. Cytochrome c3 and desulfoviridin have been purified from cells grown in defined medium. 16S rRNA sequence analysis indicates the organism is a new genus of sulfate-reducing bacteria in the delta subdivision of the class Proteobacteria. We propose that the strain be named Desulfomonile tiedjei.Non-standard abbreviations PIPES piperazine-N,N-bis[2-ethanesulfonic acid] - MES 2-[N-morpholino]ethanesulfonic acid - TES N-tris[hydroxymethyl]methyl-2-aminoethanesulfonic acid - HQNO 2-N-heptyl-4-hydroxy-quinoline-N-oxide - CCCP carbonyl-cyanide-m-chlorophenylhydrazine - CM carboxymethyl  相似文献   

19.
Two types of new anaerobic bacteria were isolated from anoxic freshwater sediments. They grew in mineral medium with oxalate as sole energy source and with acetate as main carbon source. Oxalate as well as oxamate (after deamination) were decarboxylated to formate with growth yields of 1.2–1.4 g dry cell matter per mol oxalate degraded. No other organic or inorganic substrates were used, and no electron acceptors were reduced. Strain WoOx3 was a Gramnegative, non-sporeforming, motile vibrioid rod with a guanine-plus-cytosine content of the DNA of 51.6 mol%. It resembled the previously described genus Oxalobacter, and is described as a new species, O. vibrioformis. Strain AltOx1 was a Gram-positive, spore-forming, motile rod with a DNA base ratio of 36.3 mol% guanine-plus-cytosine. This isolate is described as a new species of the genus Clostridium, C. oxalicum.  相似文献   

20.
A new phototrophic bacterium was isolated from Jordanian and Kenyan alkaline salt lakes. Cells are rod shaped, 1.5 m wide and 2–4 m long, and motile by polar flagella. They divide by binary fission, and possess photosynthetic membranes as lamellar stacks similar to those in the other species of the genus Ectothiorhodospira and the brown colored Rhodospirillum species. The presence of bacteriochlorophyll a and carotenoids of the normal spirilloxanthin series is indicated by the absorption spectra of living cells. Under certain growth conditions the cells form gas vacuoles, may become immotile and float to the top of the culture medium. Sulfide and thiosulfate are used as photosynthetic electron donors. During the oxidation of sulfide to sulfate, elemental sulfur is formed, which is accumulated outside the cells. The organisms are strictly anaerobic, do not require vitamins, are moderately halophilic and need alkaline pH-values for growth. The new species Ectothiorhodospira vacuolata is proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号