首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
通过静电纺丝技术制备PVDF/PVDF-HFP复合纳米纤维膜,然后对其进行热压处理,采用FE-SEM对其形貌进行表征,并对其力学性能和防水透湿性能进行评价.结果表明:PVDF和PVDF-HFP溶液的最佳纺丝质量分数分别为9%和12%;热压处理后PVDF/PVDF-HFP复合纳米纤维膜具有优异的防水透湿性能,当复合纳米纤维膜中PVDF与PVDF-HFP的质量比为2∶1时,其耐静水压达到7 220 mm H2O,透湿量达到7 300 g/(m2·24 h).  相似文献   

2.
由我院化学工程系顾振亚教授主持的天津市自然科学基金项目“聚偏氟乙烯微孔膜防水透湿织物的研究”于 1 999年 1 0月 2 1日通过天津市科委组织的专家验收 .  该项目研究是一项创新工程 ,开拓性地提出了以聚偏氟乙烯 (PVDF)为复合层的新型织物 ,完全不同于国际上现行的美国戈尔公司以聚四氟乙烯 (PTFE)为复合层的复合织物和美国伏泰克透湿织物的技术路线 ,不仅打破了国外在技术上的垄断 ,而且具有中国的特色 .这一项目成功地解决了高防水高透湿织物在技术上的统一 ,在军用和民用领域内具有十分重要的意义 .聚偏氟乙烯微孔膜防水透湿织…  相似文献   

3.
为了制备高效低阻的纳米纤维空气过滤膜,采用静电纺丝技术,以钛酸钡(BaTiO_3)作为驻极体,制备了不同质量分数、不同纺丝时间的PVDF/BaTiO_3复合驻极纳米纤维膜,并对其微观结构、表面化学结构、透气性能、透湿性能、过滤性能进行了研究分析。结果发现:当BaTiO_3的质量分数为0.8%、纺丝时间为40 min时,制备的PVDF/BaTiO_3复合纳米纤维滤膜性能达到最优,此时纳米纤维滤膜的透气率最大达369 mm/s,透湿量最大达4 672.79 g/(m~2·d),过滤效率为76.8%,阻力压降为11.76 Pa,品质因子最大值达0.124 2。  相似文献   

4.
对PVDF/PA12混纺电纺膜进行热牵伸取向处理,然后将2张取向电纺膜进行90°交叉铺叠,再进行热轧粘合,所得电纺膜在大幅提升机械性能的同时,获得了准各向同性电纺膜结构.研究发现:虽然热轧粘合后过滤效率和透气性会略有下降,但所得电纺膜具有更小的孔隙尺寸、更均匀的孔隙分布,纤维排列规整,结晶度增加,纵横向机械强度均得到大幅提升.  相似文献   

5.
为提高纳米纤维复合织物的服用性能及界面结合性能,利用等离子体技术对相变/PAN纳米纤维膜进行预处理,通过动态接触角测试确定了最佳等离子体处理条件;重点研究了织物复合时低温热熔网膜胶、纤维丝胶和气凝胶3种不同特性的粘合剂对复合织物的保温性、透气透湿性及力学性能的影响.结果表明:等离子体处理相变/PAN纳米纤维膜的最佳参数为功率120 W,处理速率80 mm/s;使用气凝胶粘合的复合织物保温性能最佳,传热系数12.37 W/(m~2·℃),降温系数39.26%,克罗值0.521(0.155℃m~2/W);低温热熔网膜胶粘合的复合织物表现出较高的透气性、透湿性效果及界面结合性能,透气率11.42 mm/s,透湿量17 010.2g/(m~2·d),剥离强力53.75 c N;粘合剂在织物界面的形貌结构和分布状态是复合织物性能的关键影响因素.  相似文献   

6.
采用湿法成膜法制备了聚氨酯(PU)/聚偏氟乙烯(PVDF)共混膜,通过扫描电子显微镜、接触角测试仪、织物电子强力机、透湿仪以及透气仪等对共混膜的微观形态、接触角、力学性能以及透气透湿性进行了测试。实验结果表明:PVDF的加入对共混膜的微观形态产生了一定的影响,随着PVDF含量的增加,共混膜的断裂强度和断裂伸长率以及透气透湿性能均呈现先上升后下降的趋势,且在PVDF含量为20%时,共混膜的综合性能达到最优;而接触角随着PVDF含量的上升而逐渐增加。  相似文献   

7.
将季铵盐壳聚糖(HACC)与水性聚氨酯(WPU)进行共混,对共混膜进行了耐静水压、透湿量性能测试.讨论了HACC用量、共混时间、烘干温度对共混膜防水透湿性能的影响.结果表明,当HACC用量10%~15%,共混时间15~20min,烘干温度100~110℃时,制备的共混膜具有良好的防水透湿性能及共混性能.  相似文献   

8.
将蓄热调温纤维与羊绒混纺制备出一种智能调温羊绒纱,并织制了双层和单层紧密纺混纺纱与环锭纺混纺纱针织物,采用KES风格仪对混纺针织物的风格进行评价;并通过测试织物的透气、透湿性,评价织物的热湿舒适性能;使用DSC测试混纺织物的熔融温度与吸热焓值、结晶温度与放热焓值,以及平板式保暖仪测试织物的保暖性,评价混纺织物的调温功能。结果表明:双层织物调温性能比单层织物的调温性能好,紧密纺混纺纱织物的热湿舒适性能比环锭纺混纺纱织物的热湿舒适性能好。  相似文献   

9.
以聚己二酸丁二醇酯2000、聚乙二醇以及改性蓖麻油作为混合软段制备了一系列温度感应性聚氨酯,分别采用傅里叶红外光谱、扫描电镜、差示扫描量热仪以及宽角X衍射等对其化学结构、微观结构、热性能及结晶性进行研究,并将制备聚氨酯用于织物整理,通过测定整理织物的透湿率和耐静水压考察其防水透湿性.结果表明:所制备的系列聚氨酯热熔融温度在35~40℃,其整理织物的透湿率在此温度范围附近有明显突跃;X宽角衍射结果显示,所制备的聚氨酯在19°,25°和21.5°出现软段PEG2000和PBA2000的结晶峰;SEM照片显示,所制备的聚氨酯形成一致密无孔薄膜,硬相分布在软相中,织物经涂层后在表面形成一层聚氨酯膜;整理织物的透湿率随聚氨酯组分中聚乙二醇相对分子质量和PEG2000含量增加逐渐增大,随硬段含量增加逐渐降低.  相似文献   

10.
为开发高效低阻且滤效持久的空气过滤材料,采用静电纺丝技术对PVDF、PI两种极性不同的驻极体进行不同比例SiO_2纳米颗粒掺杂改性,并对所得SiO_2/PVDF和SiO_2/PI两种复合电纺膜的表面形貌、纤维直径、机械性能、荷电特性、过滤性能进行测试表征.结果表明:与SiO_2/PI复合纳米纤维膜相比,SiO_2/PVDF复合纳米纤维膜表面带有更高的初始表面电势,且电势衰减较慢;随着纳米SiO_2比例的提高,SiO_2/PVDF复合纳米纤维膜的荷电性能和过滤性能均先提高后下降;当SiO_2/PVDF质量比达到10/100时,其荷电性能和过滤性能均达最佳,此时初始表面电势达到-8.7 kV;面速率为32 L/min时其过滤效率为99.328%@0.26μm,过滤阻力约70 Pa.而SiO_2/PI复合纳米纤维膜的机械性能、荷电效果和过滤性能随着SiO_2比例的提高严重下降.  相似文献   

11.
提出了一种制备纳米量级铁电聚合物PVDF/PDDA超薄膜的新方法。聚二烯丙基二甲基氯化铵(PDDA)和极化处理后的聚偏氟乙烯(PVDF)复合超薄膜是通过层与层的静电自组装(LbL-SA)方法制备的,厚度约30~150 nm,每层膜厚度约为9 nm。PVDF/PDDA多层膜通过石英晶振微天平(QCM)、红外频谱仪、原子力显微镜(AFM)进行了测试与表征。QCM表征结果表明,PVDF与PDDA超薄膜能较好地交替组装;AFM表明PVDF/PDDA聚合物超薄膜的表面均匀、薄膜致密。与PVDF厚膜的电阻性能相比,PVDF/PDDA复合超薄膜的电阻性能有了很大提高。  相似文献   

12.
为了降解印染废水中的染料,将二氧化钛(TiO_2)与聚偏氟乙烯(PVDF)添加至N,N-二甲基甲酰胺(DMF)和丙酮的混合溶液中制备纺丝液,通过离心纺制备具有光催化降解性能的TiO_2/PVDF纤维。利用场发射扫描电镜(FESEM)观察纤维的表面形态,采用光化学反应仪测试复合纤维光催化降解染料性能,运用紫外可见分光光度计分析染料的降解情况。研究结果表明:复合纤维表面TiO_2的负载量随TiO_2质量浓度的增大而增大;当纺丝液中TiO_2与PVDF的质量浓度百分比为6∶10时,离心纺纺制出的TiO_2/PVDF复合纤维对染液的脱色率最高,对亚甲基蓝、罗丹明B、酸性黑10B都具有良好的降解效果,同时该复合纤维具有良好的可重复使用性。  相似文献   

13.
针对静电纺丝纳米纤维膜孔径偏大的问题,以聚偏氟乙烯(PVDF)为成膜聚合物,N,N-二甲基甲酰胺(DMF)/丙酮为混合溶剂制得纺丝液,采用静电纺丝技术制备PVDF纳米纤维膜,并研究聚合物浓度对纳米纤维膜孔结构及油水分离性能的影响。结果表明:增大纺丝液浓度会明显提高PVDF纳米纤维直径,使得纳米纤维直径分布变窄;当PVDF质量分数为14%时,所得PVDF纳米纤维膜具有较好的表面形貌和拉伸强度;油水分离结果表明,重油体系(二氯甲烷+水)通量最大达2 900.86 L/(m2·h),分离效率高达99.5%,高粘附油体系(玉米油+水)通量最小为32.98 L/(m2·h),分离效率仅有91.7%。在进一步的油包水乳液分离过程中,PVDF纳米纤维膜(M-3)具有的油水分离通量为7.9 L/(m2·h),分离效率高达97.6%。  相似文献   

14.
为了制备pH刺激响应型智能膜,并为膜改性提供结构可控的两亲性聚合物共混改性剂,以聚甲基丙烯酸二甲氨基乙酯(PDMAEMA)为亲水链段、聚甲基丙烯酸甲酯(PMMA)为疏水链段,通过RAFT聚合合成两亲性三嵌段聚合物PDMAEMA-b-PMMA-b-PDMAEMA(PDMD),采用1H-NMR对其化学结构进行了表征.以PDMD作为改性剂,通过NIPS法制备PVDF改性膜,采用ATR-FTIR、XPS、SEM和接触角测定仪对PDMD/PVDF改性膜的表面化学结构、微观形貌和亲水性进行了表征.结果表明:随着聚合物改性剂的增加,PDMD/PVDF改性膜表面PDMAEMA含量增加,改性PVDF膜的初始接触角由纯膜的108.9°降低至92.4°,纯水(pH 5.2)通量由纯膜的15.0 L/(m2·h)增大至250.0 L/(m2·h);并且改性膜随着纯水pH值的逐渐减小,膜通量减小,纯水pH值从11降到3时,通量从225.6 L/(m2·h)降至91.2 L/(m2·h).因此PDMD的加入改善了PVDF膜亲水性,可为pH刺激响应型智能膜的构建提供新材料.  相似文献   

15.
针对温度监测外部电源限制寻找一种柔性自供电、响应时间快、具有长期循环稳定性的温度传感器件具有重要的实际应用价值.介绍了一种基于摩擦机制的接触分离式自供电温度传感器制备方法.利用聚偏氟乙烯(PVDF)的热释电性增强摩擦层接触表面的电荷密度, PVDF表面Ag电极被用作底部电极层和摩擦层.聚四氟乙烯(PTFE)作为顶部摩擦层其与顶部电极导电铜箔相连接.将中空结构的间隔层(Kapton)置于PTFE膜和Ag电极之间形成空腔结构;研究结果表明,在295~335 K温度范围内,传感器输出电压随温度增加呈线性增加,并且其温度响应时间大约为0.1 s,灵敏度为0.25 V/K, 5 500次周期性接触分离循环仍具有优异的稳定性.该摩擦发电机在安全监测,自供电温度传感方面具有潜在应用价值.  相似文献   

16.
为了制备一种性能优良的含氟阴离子交换膜,选择聚偏氟乙烯(PVDF)膜为基膜,依次经过碱处理、化学接枝氯甲基苯乙烯(VBC)及季铵化反应得到PVDF基阴离子交换膜.采用电化学、化学、红外光谱(IR)和热失重(TGA)分析方法分别对膜面电阻、阴离子选择透过率、离子交换容量(IEC)、膜基团变化和热稳定性进行分析.结果表明:PVDF基阴离子交换膜具有较好的综合性能,面电阻为1.4 Ωcm 2,阴离子选择透过率为93.2%,IEC为1.17mmolg -1干膜.PVDF基膜经各步处理后,依次生成含双键碱处理PVDF膜、PVDF-g VBC膜和季铵盐型PVDF基阴离子交换膜,各处理膜热稳定性依次下降,PVDF基阴离子交换膜使用温度不高于130℃.该方法成功制备了具有较好性能的含氟PVDF基阴离子交换膜.  相似文献   

17.
为了探究GO对PVDF微滤膜亲水性及渗透性能的影响,以GO作为无机添加剂,利用相转化法制备了高性能GO/PVDF复合微滤膜,先后考察了铸膜液预挥发时间、凝固浴温度对复合膜性能的影响,同时从成膜机理的角度上分析了GO投加量对复合膜结构和性能的影响,确定了最优制膜配方.结果表明:保持铸膜液预挥发时间为0 s、凝固浴温度为29℃时更有利于提高膜纯水通量和截留率;投加GO后大幅度提高了膜亲水性,当GO的相对质量分数(即相对于PVDF的质量分数)为1.5%时,膜表面形成了致密的多孔结构,使纯水通量提高了87.6%,对BSA的截留率从63.56%增加到了71.27%.  相似文献   

18.
为制备高效低阻、滤效耐久的纳米纤维空气滤材,利用静电纺丝工艺制备不同二氧化钛/氮化硅(TiO2/Si3N4)掺杂比例的聚偏氟乙烯(PVDF)电纺膜,再利用电晕充电的方式进行静电驻极.通过扫描电子显微镜、接触角测试仪、静电测试仪、滤料综合性能测试仪对PVDF-TiO2/Si3N4电纺膜的表面形貌、结构、疏水性、荷电性能以...  相似文献   

19.
为制备具有高通量、低传质阻力及高吸附容量的亲和膜,利用溶液喷射纺丝技术制备了聚偏氟乙烯(PVDF)纳米纤维膜,对其进行活化偶联赖氨酸亲和配基后制得了新型纳米纤维亲和膜,探讨了温度、时间和pH值对其吸附胆红素的影响.结果表明:所得纤维直径范围为50~250 nm,纤维呈三维卷曲形态,杂乱堆积形成蓬松高孔隙率的纳米纤维膜,水通量可达到0.42 mL/(cm~2·s);经赖氨酸表面修饰后,对胆红素具有良好的吸附性能,最大吸附量可达378.69 mg/g.  相似文献   

20.
为制备可降解染料抗污染的催化膜材料,首先用多巴胺(DA)对聚偏氟乙烯(PVDF)粉末进行改性,然后用改性的PVDF粉末制备了多孔平板膜,随后利用聚多巴胺的还原性原位在膜中负载和固定了银纳米颗粒,得到了PVDF/PDA/Ag催化膜;采用傅里叶变换红外光谱仪、场发射扫描电镜、X射线光电子能谱仪、电感耦合等离子体发射光谱仪等对膜进行表征,并用亚甲基蓝溶液对膜的催化性能进行测试.结果表明:PDA改性的PVDF膜表面和膜孔中成功引入了Ag纳米粒子;随着催化反应温度由20℃增加到40℃,催化膜对亚甲基蓝的催化反应速率常数由0.088 min~(-1)增加到0.394 min~(-1);实验中对亚甲基蓝的催化降解呈一级反应动力学,表观反应速率常数为0.066 15 min~(-1),活化能Ea值为56.13 k J/mol,而且催化膜表现出很好的重复利用性,在重复使用8次后,降解率仍保持在80.8%以上.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号