首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 656 毫秒
1.
聚噻吩/多壁碳纳米管复合材料的导电性能   总被引:1,自引:0,他引:1  
通过共混多壁碳纳米管(MWNTs)和聚噻吩(PTh), 制备了PTh/MWNTs复合材料, 复合材料表现出良好的导电性能(电导率达16.1 S/m). 通过Raman, TG, XPS, UV-Vis等对复合材料进行了分析, 结果表明, MWNTs和 PTh之间存在强的相互作用, MWNTs上的离域电子与噻吩共轭主链上的π电子之间形成π-π共轭, 电子从MWNTs转移到聚噻吩, 增加了噻吩主链的有效共轭长度, 提高了复合材料的导电性能. FESEM分析表明, MWNTs和它周围被掺杂的聚噻吩通过π-π共轭作用结合在一起, 形成相对独立的导电单元, 在复合材料的导电体系中起到主要作用.  相似文献   

2.
聚3-辛基噻吩/MWNTs复合材料的导电性能研究   总被引:2,自引:0,他引:2  
采用在氯仿溶液中超声共混, 制备聚3-辛基噻吩(P3OT)和多壁碳纳米管(MWNTs)复合材料. 当MWNTs掺杂量为3%时复合材料的电导率为1.43 S•m-1, 达到纯MWNTs的电导率水平. 用FTIR光谱, TG, UV-Vis光谱, XPS和FESEM进行研究分析, 认为MWNTs的离域电子与P3OT主链上的π电子之间形成π-π共轭, 增加了P3OT主链的有效共轭度, 被掺杂的P3OT具有很高的电导率, 提高了复合材料的导电性能. MWNTs与被掺杂的P3OT组成相对独立的导体单元, 对复合材料的导电网络形成起着主要作用.  相似文献   

3.
通过机械共混和溶液共混制备了多壁碳纳米管(MWNTs)/溴/聚苯乙炔(PPA)三元复合材料,复合材料表现出良好的导电性能,电导率为10S/m,达到掺溴MWNTs的导电水平.通过固体紫外光谱、XPS和SEM分析了复合材料中MWNTs、溴与PPA三者之间的相互作用,研究了独立导电单元的形成,以及导电单元对电导率提高所起的作用.结果表明,当MWNTs含量较低时,MWNTs和PPA之间的溴转移导致复合材料电导率降低;MWNTs含量较高时,独立导电单元的数目增多,复合材料的电导率随之大幅提高.  相似文献   

4.
多壁碳纳米管/溴/聚苯乙炔三元复合材料导电性能的研究   总被引:1,自引:0,他引:1  
通过机械共混和溶液共混制备了多壁碳纳米管(MWNTs)/溴/聚苯乙炔(PPA)三元复合材料, 复合材料表现出良好的导电性能, 电导率为10 S/m, 达到掺溴MWNTs的导电水平. 通过固体紫外光谱、XPS和SEM分析了复合材料中MWNTs、溴与PPA三者之间的相互作用, 研究了独立导电单元的形成, 以及导电单元对电导率提高所起的作用. 结果表明, 当MWNTs含量较低时, MWNTs和PPA之间的溴转移导致复合材料电导率降低; MWNTs含量较高时, 独立导电单元的数目增多, 复合材料的电导率随之大幅提高.  相似文献   

5.
合成了两亲性的聚(γ-苄基-L-谷氨酸酯)-b-聚乙二醇(PBLG-b-PEG)聚肽刚-柔嵌段共聚物和聚苯乙烯(PS)均聚物及多种聚苯乙烯衍生物,包括聚(4-乙酰氧基苯乙烯)(PAS)均聚物、聚(4-羟基苯乙烯)(PVPh)均聚物和聚(苯乙烯-co-4-乙酰氧基苯乙烯)(P(S-co-AS))共聚物.用傅里叶变换红外光谱(FTIR)、核磁共振氢谱(1H-NMR)和凝胶渗透色谱(GPC)等表征了聚合物的结构、分子量及分布.采用共溶剂溶解、选择性溶剂透析的方法,制备了PBLG-b-PEG嵌段共聚物与不同PS衍生物(包括PS均聚物)共混体系的自组装聚集体,利用透射电子显微镜(TEM)和扫描电子显微镜(SEM)等表征了自组装体的形貌和结构.研究发现,不同的分子间相互作用(如π-π共轭作用、偶极-偶极相互作用、氢键作用等)对共混体系的自组装形貌有显著的影响.PBLG-b-PEG/PS共混体系自组装可形成表面具有条纹结构的"毛线球"聚集体,该体系中PBLG和PS之间形成π-π共轭作用,相互作用强度相对较弱;PBLG-b-PEG/PAS共混体系自组装可形成表面基本光滑并有轻微凹陷的球形聚集体,该体系中PBLG和PAS之间除了π-π共轭作用,还可形成相对较强的偶极-偶极相互作用;而PBLG-b-PEG/PVPh共混体系自组装得到了囊泡,该体系中PBLG与PVPh之间可形成π-π共轭和氢键作用,相互作用强度进一步增强.对于PBLG-b-PEG/P(S-co-AS)共混体系,可通过改变P(S-co-AS)共聚物中AS摩尔分数和制备温度来调控自组装聚集体表面的条纹形貌.根据PBLG链段与不同PS衍生物(包括PS均聚物)之间不同的分子间相互作用,提出了上述聚集体形貌转变的机理.  相似文献   

6.
采用超声辐照原位乳液聚合方法制备了聚苯乙烯(PS)包覆多壁碳纳米管(MWNTs)复合材料. 用TEM, FTIR, UV, XPS, GPC和TGA研究了复合材料的结构和性能. 结果表明, MWNTs对苯乙烯聚合过程具有抑制作用, 聚苯乙烯包覆MWNTs, 两者之间有较强的相互作用, 使复合材料的热性能得到改善, 起始分解温度从388 ℃提高到422 ℃.  相似文献   

7.
导电聚合物是由一些具有共轭π键的聚合物经化学或电化学掺杂后形成的导电率可从绝缘体延伸到导体范围的一类高分子材料。其中噻吩及其衍生物具有导电率高、环境稳定性好、成膜性好、禁带宽度小等特点,是用做光伏电池的理想材料。相继报道的有聚3-甲噻吩[1]、聚3-己基噻吩[2],聚(3-十一烷基-2,2’-并噻吩)[3]等。对于聚噻吩的光电化学性质的研究,在国际上很少见报道,国内尚未见报道,本文对聚噻吩(PTh)的光电化学性质进行了研究。1实验部分1.1仪器与试剂光电化学实验采用带石英窗口的三电极电解池,工作电极为ITO/PTh膜电极,参比电极为饱和…  相似文献   

8.
本论文围绕制备导电聚合物PEDOT(聚3,4-二氧乙基噻吩)与无机氧化物及金属纳米复合材料的研究,探索了不同复合材料所表现的独特的电学、光学和结构等方面性质,并建立了一种无模板制备有机/无机一维纳微米结构复合材料的一步合成新方法,制备了具有core-shell结构的PEDOT/PSS-ZnO,PEDOT/PSS-Au复合纳米线,取得了以下创新性结果.  相似文献   

9.
聚噻吩制备条件对其结构和导电性能的影响   总被引:1,自引:0,他引:1  
通过改变聚噻吩合成条件(温度、浓度、反应时间)得到各种不同样品, 用FESEM, FTIR光谱, Raman光谱, XRD, UV-Vis光谱和TG等手段对样品进行研究. 结果表明, 不同的制备条件会影响噻吩环的连接方式, 直接影响聚噻吩结构的分布. 导电性能研究表明, 聚噻吩的结构差异和其导电性能直接相关, 实验证明以α-α相连接的聚噻吩有更高的电导率.  相似文献   

10.
聚噻吩是一种共轭有机高聚物,其结构如图1所示。类似于聚乙炔,经电子受体掺杂后的聚噻吩,呈现出较高的电导率。为了阐明导电高聚物的电导机制,必须搞清掺杂后掺杂剂的化学结构和高分子链与掺杂剂之间的相互作用。前文我们报道了用扩展X射线吸收精细结构(EXAFS)谱对H_2PtCl_6·6H_2O掺杂聚乙炔的研究,本文报道对FeCl_3掺杂聚噻吩的研究结果。  相似文献   

11.
将磺化聚苯乙炔(SPPA)与多壁碳纳米管(MWNT)超声共混制备得到SPPA/MWNT复合材料. 用四探针电阻率测试、场发射扫描电镜(FESEM)、XPS、UV-Vis、XRD等方法对复合材料导电机理进行研究. 结果表明, SPPA/MWNT的电导率发生两次突跃;掺杂剂MWNT具有低的临界阈值; 临界阈值附近, 复合材料中MWNT具有不连续分布的现象及复合材料电阻呈负温度系数(NTC)效应; SPPA/MWNT复合材料中MWNT的碳原子对SPPA 进行掺杂. 推测复合材料的导电机理为, 共轭聚合物SPPA不仅被导电粒子MWNT物理填充, 同时还被MWNT的碳原子掺杂, 使复合材料中存在两种导电通路而导电, 一是因被掺杂而成为高电导率主体的SPPA相互接触形成的导电通路, 二是MWNT相互接触形成的导电通路.  相似文献   

12.
将磺化聚苯乙炔(SPPA)与多壁碳纳米管(MWCNTs)超声共混制备得到SPPA/MWCNTs复合材料. 用X光电子能谱仪、固体紫外-可见分光光度计、X射线衍射仪、四探针、场发射扫描电镜等对复合材料导电特性及机理进行研究. 结果表明: SPPA/MWCNTs 复合材料中SPPA与MWCNTs发生电荷转移而被掺杂, 并且由于SPPA与MWCNTs间的电荷转移, 彼此间存在一定的相互作用力; 复合材料电阻呈负温度系数效应; SPPA/MWCNTs复合材料电导率发生两次突跃. 可能的导电机理为, 复合材料中SPPA不仅被MWCNTs物理填充, 同时还被MWCNTs掺杂, 复合材料中存在两种导电通路, 一是SPPA与MWCNTs的碳原子发生电荷转移而被掺杂, 彼此之间存在一定的相互作用力, 导致SPPA包裹MWCNTs形成独立导体单元, 这种独立单元相互接触形成导电通路; 二是MWCNTs彼此之间相互接触形成导电通路, 并建立了该导电机理的理论模型.  相似文献   

13.
Conjugated polymers gain growing importance as conductive materials in industrial applications in various fields of electronic devices. Cellulose with its extraordinary supramolecular structure and material properties can help to awake the possibilities for conducting polymers in interplay of the two materials. The ability of additional derivatization, the stiff and oriented molecular structure and the inherent strength, stability and film-forming properties give cellulose a complementary role to the brittle conjugated polymers, cellulose imparting the features of a stable and robust carrier component. To go forward this way, making a composite out of cellulose and conducting polymers is a prerequisite. Different strategies to form composite materials of non-derivatized cellulose and conductive organic polymers were tested. Significant differences between various mixing strategies as well as between the conducting polymers polyaniline (PAni), polypyrrole (PPy), and polythiophen (PTh) were observed. In situ synthesis of the conducting polymers in cellulose solutions and microcellulose dispersions as well as blending of pre-synthesized conducting polymers in these cellulose systems were tested. Unexpectedly, not homogenous mixtures showed best results in respect to film formation and conductivity, but composites formed by heterogeneous mixtures of the conducting polymers within a cellulose gel. Best results were obtained with finely dispersed PAni. The results support development studies towards circuitry and photo-current systems based on cellulose carriers.  相似文献   

14.
Composites of polyvinylidene fluoride (PVDF) and multi-wall carbon nanotubes (MWNT) were prepared by a melt mixing process. Temperature dependence of electrical properties of the nanocomposites was investigated for composites containing different amounts of MWNT. An obvious positive temperature coefficient was observed. It was found that resistivity of the composites was decreased with increasing MWNT content and the electrical percolation threshold was formed at 3 wt% MWNT, which were caused by the formation of conductive chains in the composites. The mechanism of the positive temperature coefficient behavior of the nanocomposites is discussed. The rheological results showed that the materials experience a fluid–solid transition at the composition of 2 wt%, beyond which a continuous MWNT network forms throughout the matrix leading to a percolated network structure, which further indictes the nanotubes were dispersed uniformaly, in the PVDF matrix.  相似文献   

15.
The transport properties of conducting polymers are known to be greatly influenced by the chemical unsaturation surrounding the polymer backbone, besides favorable conformation of the side chains present. Polymeric composites with multi‐walled carbon nanotubes (MWNT) can provide a good conductive path at relatively low carbon contents, as these have high aspect ratio, specific surfaces and are cost effective. Hence their use in various applications such as organic LED, solar cells and supercapacitors are very much anticipated. In this respect poly(3‐octylthiophene)/MWNT composites have been prepared by an “insitu” polymerization process in chloroform medium with FeCl3 oxidant at room temperature. The composites were characterized by Fourier Transfer Infrared spectroscopy (FT‐IR), Raman, work function and X‐ray diffraction (XRD) measurements. The results indicate only a weak ππ interaction between the moieties, in the absence of a strong covalent bonding. The ultraviolet–visible (UV–Vis) measurements also support this view. The photoluminescence (PL) quenching indicates the effectiveness of the interface in the formation of the donor–acceptor type composite. The conductivity of the composites is followed by a four probe technique to understand the conduction mechanism. The Hall voltage measurement is followed to monitor carrier concentrations and mobilities. The impressive conductivity and mobility values encourage the utility of the composites as photovoltaic material. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

16.
Conducting polythiophene (PTh)/single‐wall carbon nanotubes (SWNTs) composites were synthesized by the in situ chemical oxidative polymerization method. The resulting cablelike morphology of the composite (SWNT–PTh) structures was characterized with elemental analysis, X‐ray photoelectron spectroscopy, Raman spectroscopy, Fourier transform infrared, ultraviolet–visible spectroscopy, field emission scanning electron microscopy, thermogravimetric analysis, X‐ray diffraction, and transmission electron microscopy. The standard four‐point‐probe method was used to measure the conductivity of the samples. Field emission scanning electron microscopy and transmission electron microscopy analysis revealed that the SWNT–PTh composites were core (SWNTs) and shell (PTh) hybrid structures. Spectroscopic analysis data for the composites were almost identical to those for PTh, supporting the idea that SWNTs served as templates in the formation of a coaxial nanostructure for the composites. The physical properties of the composites were measured and also showed that the SWNTs were modified by conducting PTh with an enhancement of various properties. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 5283–5290, 2006  相似文献   

17.
Multi‐walled carbon nanotube (MWCNT)/polythiophene (PTh) composites have been prepared by in situ chemical oxidative polymerization. PTh is synthesized onto the sidewalls of the MWCNTs, which play a role as hard templates for PTh to produce one‐dimensional nanostructures. The morphology and structures of the MWCNT/PTh composites are characterized by High‐resolution transmission electron microscopy, x‐ray diffraction, and Fourier transform infrared spectrometry. Their electrical property and thermal stability are determined using vector network analyzer and thermal gravimetric analyzer. Moreover, the mechanism of MWCNT/PTh nanowire formation is described. The studies show that the composites are nanowires with core‐shell structure, in which the outer shells and inner cores are formed by PTh and MWCNTs, respectively. The addition of MWCNTs does not change the backbone structure of PTh and affect the amorphous condition of PTh very slightly, however, it improves the electrical conductivity and thermal stability of PTh.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号