首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 921 毫秒
1.
为研究催化裂化汽油低温吸附脱硫工艺,在实验室合成了一种多孔性复合吸附剂RAL-10,采用催化裂化汽油为原料进行了低温液相吸附脱硫实验,结果显示:RAL-10吸附剂的静态吸附硫容较一般吸附剂高,可达4.06μg/g;RAL-10吸附剂对汽油中的各类硫化物具有较好的吸附活性,并对大分子硫化物具有较高的吸附选择性;RAL-10新鲜吸附剂的动态起始吸附脱硫率能够达到100%;RAL-10吸附剂再生后的动态吸附脱硫活性与新鲜吸附剂相近,起始吸附脱硫率能够达到98%以上,动态起始吸附后的油品硫质量分数小于20μg/g。  相似文献   

2.
Ni/ZnO吸附剂脱除催化裂化汽油中的硫   总被引:4,自引:1,他引:3  
 采用等体积浸渍法制备了Ni质量分数为4%的Ni/ZnO吸附剂,以FCC汽油为原料,通过固定床吸附实验评价了Ni/ZnO吸附剂对催化裂化汽油的吸附脱硫性能以及吸附剂的再生性能。结果表明,较高的反应温度、压力和较低的体积空速有利于提高Ni/ZnO对FCC汽油的吸附脱硫效果,并且汽油辛烷值损失小。Ni/ZnO吸附剂脱硫的适宜操作条件为: 温度370~380℃,吸附压力2.0MPa,氢/油摩尔比1.5,体积空速4.0h-1,此时吸附剂的穿透硫容 (硫质量分数达到30μg/g时,认为吸附剂穿透,测定吸附剂中的硫质量分数,即为吸附剂的穿透硫容。)为2.54%,汽油辛烷值损失1.1个单位。该吸附剂可以再生,多次循环使用后其脱硫性能基本保持不变。  相似文献   

3.
采用混捏法制备了NiO/ZnO吸附剂,以中国海油惠州炼化加氢汽油为原料,在小型固定床装置上考察了操作条件对其脱硫性能的影响。结果表明,较适宜的吸附反应条件为:温度为350℃,压力为0.6 MPa,汽油液空速为5h-1,氢油体积比为50∶1,在此条件下,可以将惠州炼化催化加氢汽油中的硫含量降至10μg/g,当出口产物硫含量为10μg/g时,吸附剂的穿透硫容为10.3%,脱硫后汽油的辛烷值损失为0.3个单位。失活的NiO/ZnO吸附剂采用氮气和氧气混合气焙烧法再生,且再生后的吸附剂的脱硫性能基本不变。  相似文献   

4.
流化催化裂化汽油吸附法深度脱硫工艺的研究   总被引:3,自引:5,他引:3  
以臭氧氧化活性炭为吸附剂,对流化催化裂化(FCC)汽油进行吸附脱硫研究,探索了最佳吸附条件和最佳再生条件。实验结果表明,在活性炭颗粒大小为80~100目、吸附温度为80℃、原料液态空速为1.70h-1的最佳吸附条件下,可使初始硫含量为796μg/g的FCC汽油的初始流出液的硫含量降到18μg/g,初始脱硫率达97.7%;在脱附剂为乙醇、再生温度为60℃、脱附剂液态空速为1.70h-1的最佳再生条件下再生活性炭,循环使用3次时仍可使初始流出液的硫含量降到45μg/g,初始脱硫率达94.3%。  相似文献   

5.
FCC汽油吸附脱硫工艺的研究   总被引:16,自引:3,他引:13  
在实验室固定床中试装置上以硫含量为1290μg/g的FCC汽油为原料对FCC汽油吸附脱硫工艺(LADS技术)的工艺条件进行了考察。结果表明,在吸附温度为65-85℃,吸附空速为2.0h^-1,脱附空速为2.0h^-1,吸附剂与脱附剂之比为0.5。吸附剂与原料油之比为0.5时,精制油的硫含量为760μg/g,精制油的收率为99.05%;在吸附温度为65-85℃,吸附空速为1.0h^-1,脱附空速为1.0h^-1。吸附剂与脱附剂之比为1.0,吸附剂与原料油之比为1.0时。精制油的硫含量为360μg/g,精制油的收率为97.40%;两种操作条件下精制油的辛烷值几乎不损失。  相似文献   

6.
FCC柴油氧化萃取深度脱硫工艺研究   总被引:1,自引:0,他引:1  
以氧气作氧化剂、甲酸作催化剂、N-甲基吡咯烷酮作萃取剂,采用催化氧化反应与溶剂萃取相结合的方法对催化裂化柴油进行了氧化萃取脱硫实验。考察了催化剂用量、催化氧化温度、反应时间、氧气压力及萃取剂的用量等对催化裂化柴油脱硫率的影响。结果表明,在反应温度为80℃、反应时间为90min、充氧压力为0.6MPa、催化剂与油体积比为10%的条件下,柴油经催化氧化脱硫后,硫含量可从1694.2μg/g降到190.8μg/g,脱硫率达到88.7%;在萃取剂油体积比为1.0和室温条件下,用N-甲基吡咯烷酮萃取3次,再经硅胶吸附后柴油硫含量为37.5μg/g,柴油收率为94%,达到欧Ⅳ排放标准小于50μg/g的要求。  相似文献   

7.
介绍了由中国石化石油化工科学研究院开发、中国石化催化剂南京分公司生产的国产S Zorb专用吸附剂在中国石化北京燕山分公司1.2Mt/a催化裂化汽油吸附脱硫装置上的工业应用情况。结果表明,以催化裂化汽油为原料,在反应-再生系统内全部使用国产吸附剂,通过精细操作及吸附剂的预硫化,有效地避免了反应器"飞温"情况的发生,开工过程中各项工艺参数保持稳定。装置运行平稳后,国产吸附剂表现出高的脱硫活性,可将汽油产品的硫质量分数控制在8gμ/g以下,汽油硫含量完全达到了京Ⅴ排放标准的要求。  相似文献   

8.
NOx -空气催化氧化直馏汽油脱硫   总被引:1,自引:0,他引:1  
以30 mL直馏汽油为原料,亚硝酸钠和过量浓硫酸反应生成的NOx和空气为催化剂,冰乙酸为助催化剂,对直馏汽油进行了催化氧化脱硫。结果表明,在亚硝酸钠用量为1.4 g,冰乙酸/直馏汽油(体积比)为0.7,催化氧化温度为50℃,催化氧化时间为30 min的条件下,采用催化油浆蒸馏方法处理催化氧化汽油,汽油硫含量可以从1 079.0μg/g降至173.0μg/g,脱硫率为84.0%,汽油收率为94.1%。在相同条件下,处理催化氧化汽油最佳方法依次为:催化油浆蒸馏法,聚集过滤-蒸馏法,直接蒸馏法。  相似文献   

9.
催化裂化汽油非临氢吸附脱硫新技术   总被引:10,自引:0,他引:10  
介绍了洛阳石油化工工程公司炼制研究所的专利技术——催化裂化汽油非临氢吸附脱硫(LADS)工艺技术。以硫含量为1290μg/g的催化裂化汽油为试验原料,在中型试验装置上,进行了专有脱硫吸附剂LADS-A和脱附剂LADS-D性能的考察,结果表明:采用适宜的操作条件,可使催化裂化汽油的硫含量降至800μg/g,400μg/g甚至200μg/g以下,且精制油收率高;失活的LADS-A吸附剂通过LADS-D脱附剂再生,可很好地恢复其吸附活性。该工艺过程简单,操作方便,汽油的辛烷值几乎不损失。  相似文献   

10.
用固相混捏法制备了耦合芳构化功能的反应吸附脱硫催化剂,研究了该催化剂对FCC汽油的改质性能。采用XRD和Py-IR表征了吸附剂的晶体结构和酸性特征,在高压微反装置上对其进行了活性评价,研究了吸附剂组成与工艺条件对FCC汽油改质的影响,结果表明:制备的吸附剂的活性组分由结晶良好的ZnO和ZSM-5分子筛及Ni活性组分构成。随着吸附剂中HZSM-5含量的增加,吸附剂酸性增强,芳构化反应功能提高。工艺条件对FCC汽油改质影响的研究表明,升高温度有利于芳构化反应的进行,但会加速催化剂的结焦失活,影响吸附剂的脱硫效果;增加压力可以使反应中的氢分压升高,减缓吸附剂的失活,有利于反应吸附脱硫,但不利于芳构化反应;增加氢油比可以抑制生焦,保持吸附剂活性,有利于反应吸附脱硫和芳构化反应,但会造成氢耗增加和烯烃饱和;空速增加可提高处理量,但由于原料与吸附剂的接触时间减少,导致反应物分子不能充分与吸附剂上的活性位反应,不利于芳构化和反应吸附脱硫反应的进行。采用研制的芳构化增强的反应吸附脱硫工艺及其吸附剂处理胜华FCC汽油的结果表明,在反应温度为425℃,反应压力为1.0 MPa,氢油比为200∶1,反应空速为6 h-1条件下,达到产物硫质量分数10μg/g以下时,异构烷烃和芳烃含量明显提高,可以较好的保持汽油辛烷值。  相似文献   

11.
焦化汽油催化氧化及萃取深度脱硫研究   总被引:1,自引:0,他引:1  
以空气作氧化剂,硼酸作催化剂,甲醇作萃取剂,用催化氧化与萃取分离相结合的方法,对焦化汽油进行了氧化萃取脱硫研究。结果表明,在空气压力为0.4MPa,硼酸/汽油质量比为4:100,氧化温度为50℃,氧化时间为40min的最佳处理条件下,汽油的硫含量可从1052.000μg/g降至144.124μs/g,脱硫率为86.3%,汽油的收率为92.50%。  相似文献   

12.
催化裂化汽油光化学氧化脱硫   总被引:2,自引:0,他引:2  
赵地顺  李发堂  刘文丽 《石油化工》2006,35(10):963-966
以水为萃取剂、空气中的O2为氧化剂、500W高压汞灯为紫外光光源,研究了催化裂化(FCC)汽油光化学氧化反应的机理和氧化产物,考察了反应条件对FCC汽油脱硫率的影响。实验结果表明,FCC汽油中的极性含硫化合物首先部分溶于水相中,然后在水相中被氧化。在空气通入量为150mL/min、水与FCC汽油的体积比为1.0的条件下,反应5h后FCC汽油脱硫率达40.6%,加入0.45g4A分子筛作为O2的吸附剂后FCC汽油脱硫率提高到70.2%。FCC汽油的光化学氧化反应为一级动力学反应,加入4A分子筛时的反应速率常数为0.217 4h-1,半衰期为3.18h。FCC汽油光化学氧化反应的主要产物为亚砜和砜,并进一步生成CO2、草酸、SO24-等。  相似文献   

13.
FCC汽油脱硫用交联HEC渗透汽化膜的性能评价   总被引:2,自引:0,他引:2  
 采用溶液烧铸法制备FCC汽油脱硫用交联HEC渗透汽化膜, 并对膜结构进行红外表征. 分别用硫质量分数为225μg/g和1050μg/g的2种FCC汽油评价交联HEC渗透汽化膜的脱硫性能, 探讨了料液的含硫质量分数、硫化物组成、脱硫温度对该渗透汽化膜渗透通量和富集因子的影响.结果表明, 料液的硫质量分数越高、硫化物组成越复杂, HEC渗透汽化膜的富集因子就越低, 渗透通量就越高. 随着脱硫温度的升高, 渗透通量一直增加, 而富集因子出现极大值. 富集因子最大时对应的温度为渗透汽化膜的最佳脱硫温度.对于含硫225μg/g和1050μg/g的FCC汽油, 采用交联HEC渗透汽化膜脱硫的最佳温度分别为368K和383K, 因此其较适用于低硫FCC汽油的脱硫. 对于含硫225μg/g的FCC汽油, 交联HEC渗透汽化膜的富集因子达到4.5.  相似文献   

14.
汽油络合萃取脱硫实验研究   总被引:2,自引:0,他引:2  
采用自制的脱硫络合萃取剂(TS-1),考察其对汽油中含硫化合物的脱除效果。在萃取温度20℃,萃取时间3min,相分离时间15min,剂油体积比为9%的条件下,FCC汽油A中的硫含量从619μg/g降到136μg/g,达到国Ⅲ车用汽油硫含量标准(〈150μg/g),汽油收率99.5%。在最佳操作条件下,还考察了TS-1对FCC汽油B、直馏汽油C和凝析汽油D的脱硫效果,使用较小剂油比,汽油B、C和D都可达到较高脱硫率。因此,络合萃取剂TS-1应用于汽油脱硫,具有对含硫化合物选择性好、用量少、汽油收率高和对汽油适应性优良等特点,在车用汽油深度脱硫方面展现了良好的应用前景。  相似文献   

15.
Span-60乳化剂用于流化催化裂化柴油氧化脱硫   总被引:3,自引:1,他引:2  
以Span-60为乳化剂、双氧水为氧化剂、固载磷钨酸的半焦为催化剂,对流化催化裂化(FCC)柴油进行氧化脱硫;考察了反应时间、反应温度、Span-60乳化剂用量和双氧水用量对脱硫率的影响。实验结果表明,FCC柴油氧化脱硫的优化反应条件为:反应时间60m in、反应温度60℃、Span-60乳化剂用量(基于FCC柴油的质量分数)0.6%、双氧水用量(基于FCC柴油的质量分数)2%、催化剂用量(基于FCC柴油的质量分数)1.2%。在此条件下对FCC柴油进行氧化脱硫,FCC柴油中的硫含量由1 400μg/g降至84μg/g,脱硫率达94%。气相色谱分析结果显示,氧化脱硫后FCC柴油中的苯并噻吩衍生物、二苯并噻吩及其衍生物基本上被脱除。  相似文献   

16.
连续式FCC汽油萃取-光催化氧化深度脱硫   总被引:1,自引:0,他引:1  
 采用连续式萃取-光催化深度脱硫工艺对FCC汽油进行精制,采用硫氮荧光分析仪和GC-PFPD测定精制油中硫含量,考察了萃取条件和光催化反应条件对其脱硫效果的影响。从实验结果得到,萃取操作的适宜条件为常压、萃取温度30℃、溶剂/油质量比为1~1.2;光催化反应操作的适宜条件为反应温度30~40℃、反应时间1h、氧化剂用量为3%(质量分数)。在上述操作条件下,FCC汽油精制油中硫质量分数为40.5μg/g,达到欧Ⅳ标准,精制油收率超过95%,且精制前后油品的物性基本没有变化。  相似文献   

17.
通过氧气氧化及萃取脱硫实验、脱硫率模型和汽油收率模型建立,以及模型预测分析,开展催化汽油脱硫数学模拟研究。结果表明,随着催化剂用量增加、氧化温度提高、氧气分压增大、氧化时间延长汽油脱硫率均持续增加,而汽油收率持续降低,硫化物的非催化和催化氧化反应对汽油脱硫均有贡献。依据反应动力学和萃取相平衡原理,确定了脱硫率和汽油收率模型。通过模型参数估值,确定了有关萃取相平衡常数、氧化反应速率常数。建立的脱硫率和汽油收率模型在显著性水平α=0.01时均是显著的,具有较高的模拟计算精度。研究表明,模型预测结果与实验结果的变化趋势相同;适当降低催化剂用量和强化其它氧化条件,以及适当提高萃取油剂体积比,可以达到一定的脱硫率和较高的汽油收率。  相似文献   

18.
采用XFG-1吸附剂,于固定床反应器中研究了催化裂化(FCC)汽油中微量硫化物的吸附脱除技术。在吸附温度为350℃,吸附压力为2.0 MPa,进料体积空速为7 h-1,氢油体积比为60的最佳操作条件下,可将FCC汽油中硫的质量分数从85.97×10-6降低至9.50×10-6,脱硫率为88.95%,烯烃体积分数下降1.1个百分点。XFG-1吸附剂再生后可循环使用。与新鲜吸附剂相比,再生吸附剂的吸附活性虽略有下降,但脱硫性能稳定。采用XFG-1吸附剂脱硫,可获得质量达到国V清洁汽油标准(硫质量分数小于10×10-6)要求的FCC汽油。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号