首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Phospho-compost (PC) and poultry manure (PM) were evaluated in field experiments to diversify integrated nutrient management (INM) for rain-fed cotton. Seed cotton yield in the PC (2501–2579 kg ha?1) was similar to the recommended INM (2673 kg ha?1) treatment and was significantly better than nitrogen, phosphorus and potassium (100% NPK) (2130 kg ha?1) and farmers practice (FP) (1886 kg ha?1). Yield was lower in the PM (2476–2617 kg ha?1) than in the PC. Nutrient uptake was higher in all INM intervention plots due to an improvement in soil nutrient status compared with those receiving 100% NPK. Soil labile carbon values were higher in the INM treatments (333–452 mg kg?1), with a greater magnitude in the PC-amended plots (402–452 mg kg?1). Carbon management index (CMI) values were higher for the INM than treatments NPK and FP. Among INM interventions, PC plots had higher values than the PM.  相似文献   

2.
The influence of differing soil management practices on changes seen in soil organic carbon (SOC) content of loamy Haplic Luvisol was evaluated. The field experiment included two types of soil tillage: 1. conventional tillage (CT) and 2. reduced tillage (RT) and two treatments of fertilization: 1. crop residues with nitrogen, phosphorus, and potassium (NPK) fertilizers (PR+NPK) and 2. NPK fertilizers (NPK). The results of SOC fluctuated from 9.8 to 14.5 g kg?1 and the tillage systems employed and fertilization status did not have a statistically significant influence on SOC. The SOC content was higher in RT (12.4 ± 0.86 g kg?1) than in CT (12.2 ± 0.90 g kg?1). On average, there was a smaller higher value of SOC in PR+NPK (12.4 ± 1.02 g kg?1) than in NPK (12.3 ± 0.88 g kg?1). During a period of 18 years, reduced tillage and application of NPK fertilizers together with crop residues build up a SOC at an average speed of 7 and 16 mg kg?1 year?1, respectively, however conventional tillage and NPK fertilizer applications caused a SOC decline at an average speed of 104 and 40 mg kg?1 year?1, respectively.  相似文献   

3.
Field experiments were carried out to assess the effect of nutrient management on soil properties and available micronutrients using Soil Test Crop Response (STCR) based targeted yield equations under a six-year old pearl millet-wheat cropping system. After six years, results showed that soil pH and bulk density decreased, while cation exchange capacity and organic carbon increased in farmyard manure (FYM) as compared to control and nitrogen, phosphorus and potassium (NPK) treated plots in both surface and sub-surface soil depths. Higher values of available zinc (Zn) (1.54 mg kg?1) and iron (Fe) (5.68 mg kg?1) were maintained in FYM+NPK treated plots, while higher values of manganese (Mn) (6.16 mg kg?1) and copper (Cu) (1.07 mg kg?1) were found in FYM alone at surface soil as compared to sub-surface soil. This study demonstrated the importance of application of FYM in improving soil properties and maintaining micronutrients availability in soil and their uptake by wheat for sustainable crop production.  相似文献   

4.
Abstract

Humic acids have many benefits for plant growth and development, and these effects may be maximized if these materials are combined with micronutrient applications. In the present study, pot experiments were conducted to evaluate the effects of zinc (Zn) humate and ZnSO4 on growth of wheat and soybean in a severely Zn‐deficient calcareous soil (DTPA‐Zn: 0.10 mg kg?1 soil). Plants were grown for 24 (wheat) and 28 days (soybean) with 0 or 5 mg kg?1 of Zn as either ZnSO4 or Zn humate. Zinc humate used in the experiments was obtained from Humintech GmbH, Germany, and contained 5% of Zn. When Zn was not supplied, plants rapidly developed visible symptoms of Zn deficiency (e.g., chlorosis and brown patches on young leaves in soybean and necrotic patches on middle‐aged leaves in wheat). Adding Zn humate eliminated Zn‐deficiency symptoms and enhanced dry matter production by 50% in soybean and 120% in wheat. Zinc‐humate and ZnSO4 were similarly effective in increasing dry matter production in wheat; but Zn humate increased soybean dry matter more than ZnSO4. When Zn was not supplied, Zn concentrations were 6 mg kg?1 for wheat and 8 mg kg?1 for soybean. Application of Zn humate and ZnSO4 increased shoot Zn concentration of plants to 36 and 34 mg kg?1 in wheat and to 13 and 18 mg kg?1 in soybean, respectively. The results indicate that soybean and wheat plants can efficiently utilize Zn chelated to humic acid in calcareous soils, and this utilization is comparable to the utilization of Zn from ZnSO4. Under Zn‐deficient soil conditions, plant growth and yield can be maximized by the combined positive effects of Zn and humic acids.  相似文献   

5.
The capability of Chromolaena odorata (L) to grow in the presence of different concentrations of three heavy metals in crude oil-contaminated soil and its capability to remediate the contaminated soil was investigated using pot experiments. C. odorata plants were transplanted into contaminated soil containing 50,000 mg kg?1 crude oil and between 100 and 2,000 mg kg?1 of cadmium, nickel, and zinc and watered weekly with water containing 5% NPK fertilizer for 180 days. C. odorata did not show any growth inhibition in 50,000 mg kg?1 crude oil. Plants in experiments containing 2,000 mg kg?1 Cd showed little adverse effect compared to those in Zn-treated soil. Plants in 1,000 and 2,000 mg kg?1 Ni experiments showed more adverse effects. After 180 days, reduction in heavy metals were: 100 mg kg?1 experiments, Zn (35%), Cd (33%), and Ni (23%); 500 mg kg?1, Zn (37%), Cd (41%), and Ni (25%); 1,000 mg kg?1, Zn (65%), Cd (55%), and Ni (44%); and 2,000 mg kg?1, Zn (63%), Cd (62%), and Ni (47%). The results showed that the plants accumulated more of the Zn than Cd and Ni. Accumulation of Zn and Cd was highest in the 2,000 mg kg?1 experiments and Ni in the 500 mg kg?1 experiments. Crude oil was reduced by 82% in the experiments that did not contain heavy metals and by up to 80% in the heavy metal-treated soil. The control experiments showed a reduction of up to 47% in crude oil concentration, which was attributed to microbial action and natural attenuation. These results show that C. odorata (L) has the capability of thriving and phytoaccumulating heavy metals in contaminated soils while facilitating the removal of the contaminant crude oil. It also shows that the plant??s capability to mediate the removal of crude oil in contaminated soil is not significantly affected by the concentrations of metals in the soil.  相似文献   

6.
The study was carried out between 2008 and 2010 on 8-year-old pomegranate (Punica granatum L.) trees cultivar ‘Kandhari Kabuli.’ The potential efficiency of bio-organics used along with chemical fertilizers on cropping behavior, quality attributes, nutrient availability, physico-chemical, and biological properties of soil were investigated. Bioorganic nutrient sources, namely, vermicompost (VC), biofertilizers (BF), farm yard manure (FYM), and green manure (GM), along with chemical fertilizers was evaluated in 13 different treatment combinations. Conjoint treatment application of VC at 20 kg tree?1, BF at 80 g tree?1, FYM at 20 kg tree?1, GM as sun hemp (Crotalaria juncea L.) along with 75% of the recommended dose of nitrogen–phosphorus–potassium (N–P–K) chemical fertilizers significantly resulted in maximum fruit set (52.03%) and fruit yield (34.02 kg tree?1). All of the fruit quality characteristics were also improved significantly when compared to nitrogen–phosphorus–potassium (N–P–K) chemical fertilizers. This superior combination also enhanced physical-chemical and biological properties of the rhizosphere soil. Microbial biomass of in terms of Pseudomonas, total culturable soil fungi, Azotobacter chroococcum, actinobacteria, and arbuscular mycorrhizal (AM) fungi improved 385.57, 60.26, 134.19, 168.02, and 39.87%, respectively, over control. This combination also resulted in considerable greater concentration of leaf macro-and micronutrients: N (2.63%), P (0.25%), K (1.57%), iron (Fe; 197.87 mg kg?1), copper (Cu; 14.65 mg kg?1), zinc (Zn; 59.36 mg kg?1), and manganese (Mn; 200.45 mg kg?1).  相似文献   

7.
Field experiments were conducted at Water Management Research Station, Begopara, Nadia, WB, India, during the rabi seasons of 2008–2009 and 2009–2010 to find out the integrated effect of nitrogen (N), phosphorus (P), potassium (K), farmyard manure (FYM) and zinc (Zn) under the system of rice intensification (SRI) techniques using eight treatments on the fertility changes in soil. The results revealed that the amounts of organic carbon and available N content in soil were found to maintain the highest fertility status with the highest yield in T6 (NPK + FYM 10 tha?1 + Zn 5 kgha?1) and gave the highest N uptake (55.98 kgha?1). The availability of P decreased with the increased level of Zn application and gave the highest P uptake (23.52 kgha?1) in the treatment T5 (NPK + FYM 10 tha?1). The highest Zn content (4.71 mgkg?1) was recorded in the treatment T7 (NPK + FYM 10 tha?1+ Zn 10 kgha?1).  相似文献   

8.
Available iron, zinc, copper and manganese were determined in six pedons located in upper slope, middle slope and valley bottom soils derived from Abeokuta geological materials in Nigeria. The soils had an average of 639.8 g kg?1 sand, 241.8 g kg?1 clay and 118.4 g kg?1 silt. The fertility status of the soils was low–medium with a strongly acid–neutral reaction, 1.3–15.1 g kg?1 organic carbon contents, moderate–high exchangeable bases and 1.38 mg kg?1 available phosphorus. Both Fe (122.50 mg kg?1) and Mn (111.40 mg kg?1) occurred at toxic levels, whereas the mean Cu (1.27 mg kg?1) and Zn (2.56 mg kg?1) contents were found to be adequate for most crops grown in the region. There were significant positive correlations among the micronutrients and also between soil pH, organic carbon, particle size fractions and micronutrients. The high levels of Fe and Mn were probably due to the presence of oolitic ironstone in the parent material.  相似文献   

9.
Experiments were conducted to test the superiority of treatment combinations of nitrogen (N; 0, 50, 100, 150, 200 kg ha?1), phosphorus (0, 30, 60, 90 kg ha?1) and potassium (0, 30, 60 kg ha?1) for finger millet during 2005–2007. Application of 200-90-60 kg ha?1 gave maximum yield of 1666, 1426 and 1640 kg ha?1 in 3 years, respectively. The yield regression model through soil and fertilizer nutrients gave predictability of 0.98, 0.97 and 0.98, with sustainability yield index (SYI) of 50.4, 49.4 and 52.5 in 2005, 2006 and 2007, respectively. Optimum nitrogen, phosphorus and potassium (NPK) doses for attaining yields of 800 and 1200 kg ha?1 were derived at soil nitrogen, phosphorus and potassium of 75–400, 10–70 and 150–750 kg ha?1. Fertilizer nitrogen, phosphorus and potassium ranged from 30–128, 3–19, 13–25 kg ha?1 and 105–203, 4–32, 27–39 kg ha?1 for attaining 800 and 1200 kg ha?1 yield, respectively. The doses could be adopted for attaining sustainable yields under semiarid Alfisols.  相似文献   

10.
The effects of drip fertigation of NPK and vermicompost extract (VCE) on soil fertility status of arecanut-only and arecanut-cocoa systems were assessed in a 4-year field study. In arecanut, soil pH was reduced over initial levels. At 0–30 cm deep, fertigation of 75 percent NPK to arecanut only and organic-matter recycling in arecanut + cocoa maintained significantly greater soil organic carbon (SOC) and soil-test phosphorus (P). At the first depth, soil potassium (K) was significantly greater with 75 percent NPK (246 mg kg?1) than other treatments. In cocoa, soil pH varied significantly due to fertigation at both depths. The SOC was reduced due to 75 percent NPK at the first depth. In cocoa, the P availability increased significantly with application of VCE at 20 percent N. Fertigation of 75 percent NPK maintained significantly greater soil K and soil Mg than other treatments. The results suggest that drip fertigation of NPK sustains the soil fertility status in arecanut and cocoa.  相似文献   

11.
The potential of Nostoc 9v for improving the nitrogen (N)2–fixing capacity and nutrient status of semi‐arid soils from Tanzania, Zimbabwe, and South Africa was studied in a laboratory experiment. Nostoc 9v was inoculated on nonsterilized and sterilized soils. Inoculum rates were 2.5 mg dry biomass g?1 soil and 5 mg dry biomass g?1 soil. The soils were incubated for 3 months at 27 °C under 22 W m2 illumination with a photoperiod of 16 h light and 8 h dark. The moisture was maintained at 60% of field capacity. In all soils, Nostoc 9v proliferated and colonized the soil surfaces very quickly and was tolerant to acidity and low nutrient availability. Cyanobacteria promoted soil N2 fixation and had a pronounced effect on total soil organic carbon (SOC), which increased by 30–100%. Total N also increased, but the enrichment was, in most soils, comparatively lower than for carbon (C). Nitrate and ammonium concentrations, in contrast, decreased in all the soils studied. Increases in the concentration of available macronutrients were produced in most soils and treatments, ranging from 3 to 20 mg phosphorus (P) kg?1 soil, from 5 to 58 mg potassium (K) kg?1 soil, from 4 to 285 mg calcium (Ca) kg?1, and from 12 to 90 mg magnesium (Mg) kg?1 soil. Positive effects on the levels of available manganese (Mn) and zinc (Zn) were also observed.  相似文献   

12.
Oil palm (Elaeis guineensis Jacq.) is a heavy feeder of nutrients and requires balanced and adequate supply of nutrients for optimum growth and yield. Information regarding soil nutrient status and leaf nutrient concentration is very much required for proper fertilizer application. Therefore, a survey was conducted for assessment of soil nutrient status and leaf nutrient concentration in 64 oil palm plantations in the state of Goa lying in the west coastal region of India. Soil pH, electrical conductivity (EC), organic carbon (OC), available potassium (K) (ammonium acetate-extractable K) (NH4OAc-K), available phosphorus (P) (Bray’s-P), exchangeable calcium (Ca) (Exch. Ca) and magnesium (Mg) (Exch. Mg), available sulphur (S) (calcium chloride-extractable S) (CaCl2-S), and hot water soluble boron (B) (HWB) in surface (0–20 cm depth) soil layers ranged from 4.25 to 6.77, 0.05 to 1.06 dS m–1, 5.07 to 48.4 g kg–1, 58.1 to 1167 mg kg–1, 1.80 to 415 mg kg–1, 200 to 2997 mg kg–1, 36.0 to 744 mg kg–1, 3.00 to 87.7 mg kg–1 and 0.09 to 2.10 mg kg–1, respectively. Diagnosis and Recommendation Integrated System (DRIS) norms were established for different nutrient expressions and were used to compute DRIS indices. As per DRIS indices, the order of requirement of nutrients in the region was found to be P > Mg > K > nitrogen (N) > B. Optimum leaf nutrient ranges as per DRIS norms varied from 1.64 to 2.79%, 0.36 to 0.52%, 0.37 to 0.75%, 0.89 to 1.97%, 0.35 to 0.63%, 0.89 to 1.50%, 3.10 to 13.9 mg kg?1, 7.50 to 32.2 mg kg?1, 35.0 to 91.1 mg kg?1, 206 to 948 mg kg?1, and 895 to 2075 mg kg?1 for N, P, K, Ca, Mg, S, B, copper (Cu), zinc (Zn), manganese (Mn), and iron (Fe) respectively. On the basis of DRIS-derived sufficiency ranges, 14, 5, 11, 6, 6, 6, 8, 2, 3, 6, and 16% of leaf samples had less than optimum concentrations of N, P, K, Ca, Mg, S, B, Cu, Zn, Mn, and Fe respectively. The optimum ranges developed can be used as a guide for routine diagnostic and advisory purpose for balanced utilization of fertilizers.  相似文献   

13.
A pot experiment evaluated the growth of lettuce (Lactuca sativa L.) and barley (Hordeum vulgar) and accumulation of molybdenum (Mo) in plants and soils following amendments of Mo compost (1.0 g kg?1) to a Truro sandy loam. The treatments consisted of 0 (control), 12.5, 25, and 50% Mo compost by volume. The Mo compost did not affect dry‐matter yield (DMY) up to 25% compost, but DMY decreased at the 50% compost treatment. The 50% compost treatments increased the soil pH an average of 0.5 units and increased the nitric acid (HNO3)–extractable Mo to 150 mg kg?1 and diethylenetriaminepentaacetic acid (DTPA)–extractable Mo to 100 mg kg?1 in the growth medium; the same treatment increased tissue Mo concentration to 569 and 478 mg kg?1 in the lettuce and barley, respectively. Plants grown in the 25% compost produced about 55 mg kg?1 of total Mo in the growth medium; this resulted in tissue Mo concentration of 348 mg kg?1 in lettuce and 274 mg kg?1 in barley without any phytotoxicity. Our results suggested that 55 mg Mo kg?1 soil would be an appropriate limit for Mo loading of soil developed from compost additions, a value which is presently greater than the Canadian Council for Ministers of the Environment (CCME) Guidelines for the use of type B compost in Canada.  相似文献   

14.
The present investigation was carried out to evaluate the effect of integrated nutrient management (INM) on crop yield sustainability and soil quality in a long-term trial initiated during the wet season of 1971 under a humid subtropical climate. Over 41 years of study, 100% nitrogen, phosphorus, and potassium (NPK) + farm yard manure (FYM) at 15 t ha?1 recorded the most sustainable grain yields. Optimal and superoptimal NPK fertilizers gave quite similar crop yields to that of 100% NPK + FYM at 15 t ha–1 up to two decades but thereafter yields declined sharply due to emergence of zinc (Zn) deficiency. The sustainable yield index (SYI) values indicated that wheat yields were more sustainable than rice. Soil organic carbon and available N, P, K, and Zn in the control plot decreased the most, whereas 100% NPK + FYM at 15 t ha–1 improved available N, P and K, maintained soil organic carbon, and decreased Zn over initial levels. Grain yield and SYI were more significantly correlated with Soil Organic Carbon (SOC). Continuous application of FYM contributed the maximum Soil Quality Index (SQI) (0.94), followed by Zn.  相似文献   

15.
This study evaluated the petiole uptake of nitrogen, phosphorus, potassium, and sulfur (N, P, K, and S) by the potato from two seed meals, mint compost, and five commercially available organic fertilizers under an irrigated certified organic production system. Available soil nitrate (NO3-N) and ammonium (NH4-N) from each amendment averaged 115 kg N ha?1 at application and 25 kg N ha?1 30 d after planting through harvest, with minor differences between fertilizers. Petiole N declined from an average of 25,000 mg N kg?1, 4 wk after emergence to 3,000 mg N kg?1 prior to harvest. Petiole P and K concentrations were maintained above 4,000 mg P kg?1, 10,000 mg K kg?1, and 2,000 mg S kg?1 tissue, respectively, throughout the growing season in all treatments. Tuber yields were not different between fertilized treatments averaging 53 Mg ha?1. This study provides organic potato growers baseline information on the performance of a diverse array of organic fertilizers and amendments.  相似文献   

16.
ABSTRACT

Conversion of manures to vermicompost and biochar may alleviate some negative effects of manure application to soil but the efficiency of the produced vermicompost and biochar as compared to their feedstocks is not well-known. In the current investigation, we compared the effects of sheep manure and its derived vermicompost and biochar (pyrolyzed at 400°C for 4 h) on the properties of a calcareous soil that planted with five cultivars of barley (Behrokh, Khatam, Reyhaneh03, Fajr 30 and Nimrooz) for 60 days. Different soil properties and availability of nutrients and barley yield were determined after plant harvest. The biochar significantly increased barley yield rather than control (4.20 vs. 3.57 g pot?1), but sheep manure and vermicompost had no effect on it (3.51 and 3.37 g pot?1, respectively). Fajr 30 and Nimrooz (3.52 and 3.42 g pot?1, respectively) had significantly lower yield than other cultivars. Biochar increased soil pH up to 8.2. Soil salinity was increased by application of all organic materials (increase to 16–36%). Cation exchange capacity (CEC) and organic matter content of soil were also increased by all organic materials application (0.4–0.9 cmol kg?1 and 0.33–0.50%, respectively). All organic materials increased total nitrogen (N), but this increase was the highest with sheep manure application (53%). The availability of phosphorus (P) and potassium (K) was increased significantly by application of all organic materials, and this increase was the highest with biochar application (19 and 309 mg kg?1, respectively). Biochar application had no effect on the availability of micronutrients, but application of sheep manure and vermicompost increased the availability of iron (Fe) (0.62 and 0.48 mg kg?1, respectively) and zinc (Zn) (0.18 and 0.37 mg kg?1, respectively). Generally, organic materials may change the status of soil nutrients via change in soil pH, organic matter content, release of nutrients, increase in soil CEC and formation of soluble complex with nutrients.  相似文献   

17.

Purpose

Long-term manure applications can prevent or reverse soil acidification by chemical nitrogen (N) fertilizer. However, the resistance to re-acidification from further chemical fertilization is unknown. The aim of this study was to examine the effect of urea application on nitrification and acidification processes in an acid red soil (Ferralic Cambisol) after long-term different field fertilization treatments.

Materials and methods

Soils were collected from six treatments of a 19-year field trial: (1) non-fertilization control, (2) chemical phosphorus and potassium (PK), (3) chemical N only (N), (4) chemical N, P, and K (NPK), (5) pig manure only (M), and (6) NPK plus M (NPKM; 70 % N from M). In a 35-day laboratory incubation experiment, the soils were incubated and examined for changes in pH, NH4 +, and NO3 ?, and their correlations from urea application at 80 mg N kg?1(?80) compared to 0 rate (?0).

Results and discussion

From urea addition, manure-treated soils exhibited the highest acidification and nitrification rates due to high soil pH (5.75–6.38) and the lowest in the chemical N treated soils due to low soil pH (3.83–3.90) with no N-treated soils (pH 4.98–5.12) fell between. By day 35, soil pH decreased to 5.21 and 5.81 (0.54 and 0.57 unit decrease) in the NPKM-80 and M-80 treatments, respectively, and to 4.69 and 4.53 (0.43 and 0.45 unit decrease) in the control-80 and PK-80 treatments, respectively, with no changes in the N-80 and NPK-80 treatments. The soil pH decrease was highly correlated with nitrification potential, and the estimated net proton released. The maximum nitrification rates (K max) of NPKM and M soils (14.7 and 21.6 mg N kg?1 day?1, respectively) were significantly higher than other treatments (2.86–3.48 mg N kg?1 day?1). The priming effect on mineralization of organic N was high in manure treated soils.

Conclusions

Field data have shown clearly that manure amendment can prevent or reverse the acidification of the red soil. When a chemical fertilizer such as urea is applied to the soil again, however, soil acidification will occur at possibly high rates. Thus, the strategy in soil N management is continuous incorporation of manure to prevent acidification to maintain soil productivity. Further studies under field conditions are needed to provide more accurate assessments on acidification rate from chemical N fertilizer applications.  相似文献   

18.
At present, reports of the effect of lanthanum on nitrogen cycling in the soil are very detailed, but information on carbon (C) and phosphorus (P) cycling is less reported. We present an investigation into the effects of lanthanum on the pH, microbial biomass C and P and enzyme activities (such as that of β-glucosidase, peroxidase, polyphenol oxidase, acid phosphomonoesterase, phosphodiesterase and phosphotriesterase) in soil in an indoor culture experiment. The results show that the application of lanthanum decreased the pH and had an inhibitory effect on microbial biomass C and P throughout the experiment. The application of lanthanum significantly inhibited most of enzyme activities at the 14th day of the experiment. However, soil samples treated with 100 mg kg?1 of lanthanum significantly stimulated the activity of polyphenol oxidase at the 14th day, and the range 100–300 mg kg?1 stimulated the activities during the 28th day to the 56th day. From the 42nd to the 56th day, the pH and all enzyme activities gradually increased. We inferred that the lanthanum had different effects on microbial biomass C and P and enzymes. We recommended that the amount of the rare earth element applied in a tea garden should be lower than 100 mg kg?1.  相似文献   

19.
In order to improve the effectiveness of phosphate rock as phosphorus fertilizer, elemental sulfur and Thiobacillus have been evaluated as amendments. First, Thiobacillus was isolated from different soil samples. Then, a greenhouse pot experiment was conducted using a completely randomized factorial design with three factors included: elemental sulfur at four levels of 0, 1000, 2000, and 5000 mg kg?1; phosphate rock at three levels of 0, 1000 and 2000 mg kg?1; four Thiobacillus inoculums (T1, T2, T3, T4) and without inoculation (T0) in three replications. Results showed that all the four Thiobacillus inoculums increased significantly extractable soil-P. Combined application of phosphate rock and sulfur in equal proportion (1:1) along with inoculum Thiobacillus had a significant effect in improving phosphorus availability in soil. Combined application of sulfur (at rates of 1000 and 2000 mg kg–1) and Thiobacillus significantly increased phosphorus uptake by plants as compared to the control.  相似文献   

20.
A pot experiment was conducted in a glass house on low nickel containing alluvial soil in the Department of Soil Science and Agricultural Chemistry, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, during 2012–13 and 2013–14, to study the response of barley to soil application of nickel (Ni). There were ten treatments of Ni (0, 2.5, 5, 10, 15, 20, 30, 40, 50 and 60 mg kg?1) studied with recommended dose of fertilizers nitrogen, phosphorus, potassium and sulfur (N:P:K:S :: 40:30:30:20 mg kg?1).The results showed a significant increase in plant height, number of tillers, chlorophyll content, straw and grain yield, and 1,000 grains weight with application of 10 mg Ni kg?1 soil during both years of study. The micronutrient concentration and uptake in straw and grain increased with application of <15 mg Ni kg?1 soil and beyond that declined significantly. Diethylenetriaminepentaacetic acid-extractable micronutrient iron, manganese, copper, zinc and nickel (Fe, Mn, Cu, Zn and Ni) content in soil increased with increasing level of Ni. The maximum urease activity in post-harvest soil was noticed with application of 40 mg Ni kg?1 soil. The microbial population viz. bacteria, fungi and actinomycetes were higher with 5, 30 and 10 mg Ni kg?1 soil, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号