首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We discuss results of spin-polarized electronic structure calculations for a 1 × 1 YBa2Cu3O7/PrBa2Cu3O7 supercell, obtained by the full-potential linear augmented plane wave (FLAPW) method as implemented in the WIEN2k package. The calculations are based on the generalized gradient approximation for the exchange correlation functional. The on-site Coulomb interaction of the correlated Cu 3d and Pr 4f electrons is considered by using the LSDA+U approach. The electronic states of the YBa2Cu3O7/PrBa2Cu3O7 interface are compared with the respective states in the PrBa2Cu3O7 and YBa2Cu3O7 bulk compounds, where we focus on the magnetic Pr atoms and the Cu atoms in the CuO2 planes.  相似文献   

2.
Nanoplates of α-SnWO4 and SnW3O9 were selectively synthesized in large scale via a facile hydrothermal reaction method. The final products obtained were dependent on the reaction pH and the molar ratio of W6+ to Sn2+ in the precursors. The as-prepared nanoplates of α-SnWO4 and SnW3O9 were characterized by X-ray powder diffraction (XRD), N2-sorption BET surface area, transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM) and X-ray photoelectron spectroscopy (XPS). The XPS results showed that Sn exists in divalent form (Sn2+) in SnW3O9 as well as in α-SnWO4. The gas-sensing performances of the as-prepared α-SnWO4 and SnW3O9 toward H2S and H2 were investigated. The hydrothermal prepared α-SnWO4 showed higher response toward H2 than that prepared via a solid-state reaction due to the high specific surface area. The gas-sensing property toward H2S as well as H2 over SnW3O9 was for the first time reported. As compared to α-SnWO4, SnW3O9 exhibits higher response toward H2S and its higher response can be well explained by the existence of the multivalent W (W6+/W4+) in SnW3O9.  相似文献   

3.
Co3O4-based nanosystems were prepared on polycrystalline Al2O3 by plasma enhanced-chemical vapor deposition (PE-CVD), at temperatures ranging between 200 and 400 °C. The use of two different precursors, Co(dpm)2 (dpm = 2,2,6,6-tetramethyl-3,5-heptanedionate) and Co(hfa)2·TMEDA (hfa = 1,1,1,5,5,5-hexafluoro-2,4-pentanedionate; TMEDA = N,N,N′,N′-tetramethylethylenediamine) enabled the synthesis of undoped and fluorine-doped Co3O4 specimens, respectively. A thorough characterization of their properties was performed by glancing incidence X-ray diffraction (GIXRD), atomic force microscopy (AFM), field emission-scanning electron microscopy (FE-SEM), secondary ion mass spectrometry (SIMS) and X-ray photoelectron spectroscopy (XPS). For the first time, the gas sensing properties of such PE-CVD nanosystems were investigated in the detection of ethanol and acetone. The results show an appreciable response improvement upon doping and functional performances directly dependent on the fluorine content in the Co3O4 system.  相似文献   

4.
The Al2O3–BaO binary system has been studied using the CALPHAD technique in this paper. The modeling of Al2O3 in the liquid phase is modified from the traditional formula with the liquid phase represented by the ionic two-sublattice model as (Al3+, Ba2+)P (AlO21−, O2−)Q. Based on the measured phase equilibrium data and experimental thermodynamic properties, a set of thermodynamic functions has been optimized using an interactive computer-assisted analysis. A comparison between the calculated results and experimental data is presented.  相似文献   

5.
In this paper, tricobalt tetraoxide (Co3O4) catalyst was coated on the polydimethylsiloxane microchannel by the plasma-enhanced metal-organic chemical vapor deposition technology. The obtained Co3O4 film was characterized by SEM, XRD, XPS, and TEM, and the results show that the as-deposited Co3O4 film was initially composed of many cauliflowers-shaped microclusters. Also, the microcauliflower was transformed from an amorphous phase to a crystal phase when the Co3O4 film was treated by Ar and O2 plasma for more than 20 min, and the crystal lattice line occurred on the surface of nano-sized-Co3O4 particles. Meanwhile, the interface of Co3O4 particles with diameter between 3 and 12 nm became obvious and some nano-catkin structures were also formed on the Co3O4 film. The ratio of Co3+/Co2+ in the spinel-type Co3O4 was nearly 2, and the nano-particles predominantly expose their {311}, {111}, and {220} planes. These morphologies and structure characteristics were found to be ideal for increasing the catalytic activity efficiency of Co3O4 for CO oxidation, and the catalytic stability of Co3O4 coated on the organic microreactor lasted nearly 85 h for trace CO oxidation at room temperature.  相似文献   

6.
The microscopic mechanism of O3 and CO sensing on WO3 surfaces is clarified by a first principle study. It is shown that ozone reduces to O2 on the (0 0 1) surface of WO3 decreasing in such a way the number of oxygen vacancies and the conductivity (since oxygen vacancies act as donors in WO3). The mechanism of CO sensing is just the opposite: the CO molecule is oxidized to CO2 on the WO3 surface increasing the number of oxygen vacancies and the conductivity. The reaction enthalpy for the reduction process of O3 is found to be −2.54 eV in local density approximation (LDA) and −2.86 in generalized gradient approximation (GGA). The corresponding values for CO are −1.73 eV (LDA) and −1.52 eV (GGA). The adsorptions of O3 and CO without reduction or oxidation are also calculated but the related energies are much smaller.  相似文献   

7.
The Er-Mo:Yb2Ti2O7 nanocrystalline phosphor has been prepared by sol-gel method and used as an optical thermometry. By Mo codoping, the green upconversion (UC) emission intensity increased about 250 times than that of Er:Yb2Ti2O7 under a 976 nm laser diode excitation. It indicates that such green enhancement arises from the high excited state energy transfer (HESET) with the |2F7/2, 3T2> state of Yb3+-MoO42− dimer to the 4F7/2 level of Er3+. The fluorescence intensity ratio (FIR) of the two green UC emissions bands was studied as a function of temperature in a range of 290-610 K, and the maximum sensitivity and the temperature resolution were approximately 0.0074 K−1 and 0.1 K, respectively. It suggests that the Er-Mo:Yb2Ti2O7 nanophosphor with a higher green UC emissions efficiency is a promising prototype for applications in optical temperature sensing.  相似文献   

8.
Abstract— Recently, it was found that some materials doped with rare‐earth ions show bright and long‐lasting phosphorescence. They do not include radioactive elements and can be safely used as luminous paints for use in the dark. Some of them are better than the traditional zinc sulfide doped with copper (ZnS:Cu). The most important rare‐earth materials with long‐lasting phosphorescence are aluminates such as alkaline‐earth aluminates MAl2O4:Eu2+, Dy3+ (M = Sr, Ca) and garnets Y3Ga5O12:Tb3+, Gd3Ga5O12:Tb3+, Cd3Al2Ge3O12:Tb3+, Cd3M2Ge3O12:Pr3+ (M = Al, Ge), Y3Al5?xGaxO12:Ce3+ (x = 3, 3.5). Some oxides such as InBO3:Tb3+, Ba2SiO4:Dy3+ also show long‐lasting phosphorescence properties. Other sulfide materials include ZnS:Eu, CaxSr1?x S:Bi, Tm, Cu or CaxSr1?xS:Eu. Alkaline‐earth aluminates MAl2O4:Eu2+ (M = Mg, Ca, Sr, Ba) codoped with RE3+ (RE = Y, La, Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu) were synthesized by using homogeneous precipitation method.  相似文献   

9.
Nearly monodisperse Co3O4 nanocubes have been prepared by a microwave-assisted solvothermal (MS) method at 180 °C for 20 min. The samples are characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The XRD pattern and TEM images of the products illustrated that Co3O4 nanocubes had a cubic phase with a lateral size of ∼20 nm. The gas response of the Co3O4 nanocubes was studied to several typical organic gases. The Co3O4 nanocubes showed good gas sensing performance towards xylene and ethanol vapors with rapid and high responses at a low-operating temperature. The results showed that the Co3O4 nanocubes can be used to fabricate high performance gas sensors.  相似文献   

10.
It is shown that the doping of Zn and Sn can improve the gas sensitivity of α-Fe2O3-based sensing material to CO. X-ray photo-electron spectroscopy analysis suggests that this is mainly due to the fact that the simultaneous doping of Zn and Sn can increase the S and hence SO42− contents in the α-Fe2O3(SO42−, Sn, Zn) sensing material. The results also suggest that under a given condition, the gas sensitivity of α-Fe2O3(SO42−, Sn, Zn) to CO can be optimised by properly adjusting the doped Zn content.  相似文献   

11.
A series of Bi3+ and Gd3+ doped ZnB2O4 phosphors were synthesized with solid state reaction technique. X-ray diffraction technique was employed to study the structure of prepared samples. Excitation and emission spectra were recorded to investigate the luminescence properties of phosphors. The doping of Bi3+ or Gd3+ with a small amount (no more than 3 mol%) does not change the structure of prepared samples remarkably. Bi3+ in ZnB2O4 can emit intense broad-band purplish blue light peaking at 428 nm under the excitation of a broad-band peaking at 329 nm. The optimal doping concentration of Bi3+ is experimentally ascertained to be 0.5 mol%. The decay time of Bi3+ in ZnB2O4 changes from 0.88 to 1.69 ms. Gd3+ in ZnB2O4 can be excited with 254 nm ultraviolet light and yield intense 312 nm emission. The optimal doping concentration of Gd3+ is experimentally ascertained to be 5 mol%. The decay time of Gd3+ in ZnB2O4 changes from 0.42 to 1.36 ms.  相似文献   

12.
The dissolved oxygen (DO) sensing electrode (SE) concept utilizing sub-micron-sized ruthenium oxide (RuO2), doped with other nanostructured oxides, has been extended to investigate the possibility of employing copper (II) oxide (Cu2O) as a dopant in order to improve sensor's characteristics and meet long term antifouling needs for SEs. In this work, a thin-film SE made of RuO2 was constructed on the alumina sensor substrate, and a range of dopants and their concentrations was added to it in order to optimize SE properties. The Cu2O-doped RuO2 SE had shown a linear response to DO between 0.5 and 8.0 ppm at various temperatures, with two sensitivity maxima of 47.4 and 46.0 mV per decade for Cu2O concentrations of 10 and 20 mol%, respectively. The maximum sensitivity for Cu0.4Ru3.4O7 + RuO2-SE was obtained at a dopant concentration of 10%. Selectivity measurements revealed that the presence of Ca2+, Mg2+, Li+, Na+, NO3−, PO43−, SO42−, F, K+ and Cl in the solution had no significant effect on the sensor's emf. The sensor allows overcoming the problem of an insufficient selectivity of semiconductor-based water sensors. It was also found that the doping of RuO2-SE by Cu2O allowed it to function at full capacity in a natural outdoor water body with no obvious effects of biofouling.  相似文献   

13.
Nb2O5-doped (1 − x)Ba0.96Ca0.04TiO3-xBiYO3 (where x = 0.01, 0.02, 0.03 and 0.04) lead-free PTC thermistor ceramics were prepared by a conventional solid state reaction method. X-ray diffraction, scanning electron microscope, Agilent E4980A and resistivity-temperature measurement instrument, were used to characteristic the lattice distortion, microstructure, temperature dependence of permittivity and resitivity-temperature dependence. It was revealed that the tetragonality c/a of the perovskite lattice, the microstructure and the Curie temperature changed with the BiYO3 content. In order to decrease the room temperature resistivity, the effect of Nb2O5 on the room temperature resistivity was also studied, and its optimal doping content was finally chosen as 0.2 mol%. The 0.97Ba0.96Ca0.04TiO3-0.03BiYO3-0.002Nb2O5 thermistor ceramic exhibited a low ρRT of 3.98 × 103 Ω cm, a typical PTCR effect of ρmax/ρmin > 103 and a Tc of 153 °C.  相似文献   

14.
15.
《Computers & chemistry》1992,16(4):341-343
A computer program was developed to model the electrical double and triple layer on amphoteric oxide surfaces. It was tested for the adsorption of Co2+ ions on colloidal spherical hematite (α-Fe2O3) particles in a NaNO3 suspension. The procedure is general and with a few modifications the program can be applied to other chemical equilibrium problems.  相似文献   

16.
Zr4+- and Eu3+-codoped SrMg2(PO4)2 phosphors were prepared by conventional solid-state reaction. Under the excitation of ultraviolet light, the emission spectra of Sr0.95Eu0.05Mg2−2xZr2xP2O8 (x = 0.0005-0.07) are composed of a broad emission band peaking at 500 nm from Zr4+-emission and the characteristic emission lines from the 5D0 → 7FJ (J = 0, 1, 2, 3 and 4) transitions of Eu3+ ions. These phosphors show the long-lasting phosphorescence. The emission color varies from red to white with increasing Zr4+-content. The white-light emission is realized in single-phase phosphor of Sr0.95Eu0.05Mg2−2xZr2xP2O8 (x = 0.07) by combining the Zr4+- and Eu3+-emission. The duration of the persistent luminescence of Sr0.95Eu0.05Mg2−2xZr2xP2O8 (x = 0.07) reaches nearly 1.5 h. The time at which the long-lasting phosphorescence intensity is 50% of its original value (T0.5) is 410 s. The afterglow decay curves and the thermoluminescence spectra were measured to discuss this long-lasting phosphorescence phenomenon. The co-doped Zr4+ ions act as both the luminescence centers and trap-creating ions.  相似文献   

17.
《Calphad》2001,25(1):97-108
Among the several methods that have been used to predict thermodynamic properties of ternary alloys and oxides from three binary data, we used the models proposed by Kohler(1), Toop(2), and Muggianu (3) in order to evaluate the possibility of the application of these methods to geologically important systems, such as zeolites, clay minerals and silicate glasses. These models can represent the ternary excess Gibbs energy of the NaCl-KCl-H2O and Ca-Mg-Fe2+ garnet (Ca3Al2Si3O12 - Mg3Al2Si3O12 - Fe3Al2Si3O12) systems relatively well without a ternary correction term. The deviation from the reference data increases in the central region of the composition triangle. Toop's model with constant mole fractions of NaCl and Mg best simulated the ternary systems among the models. The path independent Muggianu model was applied to diopside (CaMgSi2O6) -jadeite (NaAlSi2O6) - acmite (NaFe3+Si2O6) ternary as an example. Although there exists intrinsic uncertainty in calculation without the ternary interaction term, these models, especially, Muggianu and Kohler can be good approximation methods for prediction of the ternary excess properties of the natural mineral solid solutions, devoid of ternary experimental thermodynamic data.  相似文献   

18.
α-Fe2O3 ultra-fine powder with an average particle size of 6–26nm has been prepared by a sol-gel process. Thermal analysis, X-ray diffraction and transmission electron microscope were used to study its formation process and micro-structure. The temperature dependence of the electric conductance of the elements made of nanocrystalline α-Fe2O3 shows that the gas-sensing properties are strongly related to its surface. The elements exhibited good sensitivity and selectivity to ethyl alcohol, indicating it is a promising alcohol-sensing material.  相似文献   

19.
P2-Packing问题参数算法的改进   总被引:1,自引:1,他引:0  
王建新  宁丹  冯启龙  陈建二 《软件学报》2008,19(11):2879-2886
P2-Packing问题是一个典型的NP难问题.目前这个问题的最好结果是时间复杂度为O*(25.301k)的参数算法,其核的大小为15k.通过对P2-packing问题的结构作进一步分析,提出了改进的核心化算法,得到大小为7k的核,并在此基础上提出了一种时间复杂度为O*(24.142k)的参数算法,大幅度改进了目前文献中的最好结果.  相似文献   

20.
Liquidus phase equilibrium experimental data from the present study for the ZnO-“Fe2O3”-CaO-SiO2 system in air, combined with phase equilibria and thermodynamic data from the literature on the ZnO-“Fe2O3”-CaO system in air and ZnO-“FeO”-CaO-SiO2 system in equilibrium with metallic Fe, have been used to obtain a self-consistent set of parameters of the thermodynamic models for all phases in the ZnO–FeO–Fe2O3–CaO–SiO2 system. The modified quasichemical model is used for the liquid slag phase; spinel (Fe,Zn,Ca)tetr (Fe,Zn,Ca,Va)oct2O4, melilite Ca2(Fe2+,Fe3+,Zn)(Fe3+,Si)2O7 and olivine (Fe,Zn,Ca)I(Fe,Zn,Ca)IISiO4 are described with compound energy formalism; lime and wustite (monoxide) (Ca,Fe,Zn)O, zincite (Zn,Fe,Ca)O1+x, calcium-zinc ferrites Ca2Fe2O5-“CaZnO2” and CaFe4O7-“ZnFe4O7”, α- and α′-dicalcium silicate (Ca,Fe,Zn)2SiO4 and tricalcium silicate (Ca,Fe,Zn)3SiO5 and silicoferrite of calcium (SFC) Ca9Fe46SiO80–Ca12Fe40Si4O80 are described within Bragg-Williams formalism; for other phases, previous assessments have been adopted. The phase diagrams are back calculated with the optimized model parameters. Present study is a part of research program on the characterization of the multicomponent PbO–ZnO–FeO–Fe2O3-“Cu2O”-CaO-SiO2 system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号