首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We encountered a fourth case of honey allergy in Japan. We characterized and identified the IgE-binding proteins in honey using the serum of a honey-allergenic patient. Immunoblot analysis revealed that IgE in the patient serum specifically bound to four proteins in each honey sample. At least three of these IgE-binding proteins were N-linked glycoproteins. To identify the 60-kDa IgE-binding protein in dandelion honey, the N-terminal sequences of the fragmented protein were analyzed, revealing the protein to be major royal jelly protein 1 (MRJP 1). Three IgE-binding proteins removed of N-linked oligosaccharide showed a large reduction in IgE-binding activity as compared with the intact protein. This suggests that the carbohydrates in the IgE-binding proteins are a major epitope for patient IgE.  相似文献   

2.
Malassezia sympodialis is an opportunistic yeast that colonizes human skin and may induce IgE and T cell reactivity in patients with atopic eczema/dermatitis syndrome (AEDS). Previously, we have cloned and expressed six recombinant allergens (rMala s 1 and rMala s 5 to rMala s 9) from this yeast. By combining high throughput screening and phage surface display techniques, 27 complete and partial IgE-binding clones of M. sympodialis have been identified. Here we enlarged the panel of recombinant M. sympodialis allergens by RACE-PCR, cloning and nucleotide sequencing to obtain the coding sequences of two new IgE-binding clones. The coding sequences of one of the clones showed similarity to the heat shock protein (HSP) family and the other to manganese superoxide dismutase (MnSOD), and both had a high degree of homology to human counterparts. The coding sequences were expressed in Escherichia coli as six-histidine tagged recombinant proteins and generated products with molecular masses of 86.1 kDa for HSP and 22.4 kDa for MnSOD. Their IgE-binding frequencies were shown to be 69% and 75%, respectively, to 28 sera from AEDS patients with serum IgE to M. sympodialis extract, indicating that HSP and MnSOD are major M. sympodialis allergens. In inhibition immunoblotting, M. sympodialis extract could inhibit the binding of serum IgE from AEDS patients to rHSP and rMnSOD in a concentration-dependent manner. The high frequency of sera from AEDS patients, showing IgE binding to both HSP and MnSOD, indicates that these allergens, designated Mala s 10 and Mala s 11, could play a role in AEDS.  相似文献   

3.
Soluble IgE receptors are potential in vivo modulators of IgE-mediated immune responses and are thus important for our basic understanding of allergic responses. We here characterize a novel soluble version of the IgE-binding alpha-chain of Fc-epsilon-RI (sFcεRI), the high affinity receptor for IgE. sFcεRI immunoprecipitates as a protein of ~40 kDa and contains an intact IgE-binding site. In human serum, sFcεRI is found as a soluble free IgE receptor as well as a complex with IgE. Using a newly established ELISA, we show that serum sFcεRI levels correlate with serum IgE in patients with elevated IgE. We also show that serum of individuals with normal IgE levels can be found to contain high levels of sFcεRI. After IgE-antigen-mediated crosslinking of surface FcεRI, we detect sFcεRI in the exosome-depleted, soluble fraction of cell culture supernatants. We further show that sFcεRI can block binding of IgE to FcεRI expressed at the cell surface. In summary, we here describe the alpha-chain of FcεRI as a circulating soluble IgE receptor isoform in human serum.  相似文献   

4.
In the past decade, there has been an increase in allergic reactions to peanut proteins, sometimes resulting in fatal anaphylaxis. The development of improved methods for diagnosis and treatment of peanut allergies requires a better understanding of the structure of the allergens. Ara h 1, a major peanut allergen belonging to the vicilin family of seed storage proteins, is recognized by serum IgE from >90% of peanut-allergic patients. In this communication, Ara h 1 was shown to form a highly stable homotrimer. Hydrophobic interactions were determined to be the main molecular force holding monomers together. A molecular model of the Ara h 1 trimer was constructed to view the stabilizing hydrophobic residues in the three dimensional structure. Hydrophobic amino acids that contribute to trimer formation are at the distal ends of the three dimensional structure where monomer-monomer contacts occur. Coincidentally, the majority of the IgE-binding epitopes are also located in this region, suggesting that they may be protected from digestion by the monomer-monomer contacts. On incubation of Ara h 1 with digestive enzymes, various protease-resistant fragments containing IgE-binding sites were identified. The highly stable nature of the Ara h 1 trimer, the presence of digestion resistant fragments, and the strategic location of the IgE-binding epitopes indicate that the quaternary structure of a protein may play a significant role in overall allergenicity.  相似文献   

5.
Immunoglobulin E-binding activity was expressed in Xenopus oocytes injected with mRNA from rat basophilic leukemia cells which possess abundant immunoglobulin E (IgE) receptor. Such activity was demonstrated with intact oocytes by their binding of 125I-labeled mouse monoclonal IgE. Binding activity was specific as shown by the total inhibition of 125I-IgE binding by unlabeled IgE but not by unlabeled IgG1. The relevance of the IgE-binding activity to the IgE receptor was also supported by the absence of this activity in oocytes injected with mRNA from cells lacking surface IgE receptors. mRNA coding for the IgE-binding activity was enriched in fractions sedimenting at 13.5 S in sucrose density gradients. From oocytes injected with rat basophilic leukemia mRNA, two major polypeptides were isolated by affinity purification on IgE immunoadsorbent. One (Mr = 31,000) is equivalent in size to the previously identified "receptor-associated protein;" the other (Mr = 40,000) is speculated to be a partially glycosylated or unglycosylated form of the alpha subunit of the IgE receptor. The binding of IgE-coated fluorescent microspheres by oocytes injected with rat basophilic leukemia mRNA demonstrated the surface expression of the IgE-binding proteins.  相似文献   

6.
Wheat belongs to six major food allergens inducing IgE-mediated hypersensitivity reaction manifesting as cutaneous, gastrointestinal, and respiratory symptoms. Although cereals are a staple food item in most diets, only a few wheat proteins causing hypersensitivity have been identified. To characterize wheat allergens, salt-soluble wheat extracts were separated by 1-DE and 2-DE and IgE-binding proteins were detected by immunoblotting using sera of patients with allergy to ingested wheat. Proteins, frequently recognized by IgE on 2-DE were analyzed by MALDI-TOF and QTOF and their spectrum was completed by 1-DE and LCQ(DECA) nLC-MS/MS IT technique. Using all three techniques we identified 19 potential wheat allergens such as alpha-amylase inhibitors, beta-amylase, profilin, serpin, beta-D-glucan exohydrolase, and 27K protein. Employing newly developed ELISA, levels of IgE Abs against Sulamit wheat extract and alpha-amylase inhibitors type 1 and 3 were quantified and shown to be significantly elevated in sera of allergic patients compared to those of healthy controls. The level of IgE Abs against alpha-amylase inhibitor type 3 was lower, slightly above the cut-off value in the majority of patients' sera. Our findings contribute to the identification of wheat allergens aimed to increase the specificity of serum IgE and cell activation diagnostic assays.  相似文献   

7.
A peanut cDNA phage surface display library was constructed and screened for the presence of IgE-binding proteins. We used a serum from a peanut-sensitized individual with a low specific IgE level to peanut extract and suffering from mild symptoms after peanut ingestion. A total of 1011 cDNA clones were screened by affinity selection towards serum IgE immobilized to solid-phase supports. After five rounds of selective enrichment, sequence determination of 25 inserts derived from different clones revealed presence of a single cDNA species. The cDNA-encoded gene product, formally termed Ara h 5, shows up to 80% amino acid sequence identity to the well-known plant allergen profilin, a 14 kD protein present only in low amount in peanut extracts. Immunoblot analysis of fifty sera from individuals sensitized to peanut showed that 16% had mounted a detectable IgE response to the newly identified peanut profilin. High-level expression as non-fusion protein in BL21 (DE3) was carried under control of the inducible T7 promoter. Peanut profilin was purified by affinity chromatography on poly-( -proline)-Sepharose and yielded 30 mg l−1 culture of highly pure recombinant allergen. In spite of the high level of up to 80% amino acid identity to other plant profilins, inhibition experiments with recombinant profilins of peanut, cherry, pear, celery and birch revealed marked differences regarding their IgE-binding capacity.  相似文献   

8.
Incubation of rat-mouse T cell hybridoma cells, 23B6, with rat immunoglobulin E (IgE) results in the formation of the 15,000-dalton IgE-suppressive factor and the 30,000-dalton IgE-binding factor, which has neither potentiating activity nor suppressive activity on the IgE response. Another T cell hybridoma, 23A4 cells, produces the 30,000-dalton "inactive" IgE-binding factor upon incubation with IgE. Both the 15,000-dalton IgE-suppressive factor and the 30,000-dalton IgE-binding factor lacked affinity for lentil lectin but bound to peanut agglutinin. When the 23B6 cells were incubated with IgE in the presence of lysolecithin, the majority of the 15,000-dalton IgE-binding factor formed by the cells gained affinity for lentil lectin, and this factor selectively potentiated the IgE response. The glycosylation-enhancing factor, which was formed by stimulation of normal spleen cells with lymphocytosis-promoting factor (LPF or pertussigen), also switched 23B6 cells from the formation of IgE-suppressive factor to the formation of IgE-potentiating factor. It was also found that the 30,000-dalton "inactive" IgE-binding factor, formed by both 23B6 and 23A4 cells, gained the ability to potentiate the IgE response, when the cells were cultured with IgE in the presence of glycosylation-enhancing factor. The results indicate that IgE-potentiating factor and IgE-suppressive factor share common precursors, and that biologic activities of IgE-binding factors are decided by their carbohydrate moieties. Incubation of the two hybridoma cells with lysolecithin or glycosylation-enhancing factor results in an increase in the proportion of FC epsilon R+ cells, suggesting that the assembly of N-linked oligosaccharide to precursor molecules is intrinsic for the expression of FC epsilon R.  相似文献   

9.
Wheat omega-5 gliadin and a high m.w. glutenin subunit (HMW-glutenin) have been reported as major allergens in wheat-dependent exercise-induced anaphylaxis. A simultaneous detection of specific IgE to epitope sequences of both proteins is considered to be a reliable method for diagnosis of wheat-dependent exercise-induced anaphylaxis. However, the IgE-binding epitope of HMW-glutenin remains unknown. The aim of this study was to determine the IgE-binding epitopes of HMW-glutenin to establish a useful system of identifying patients with wheat-dependent exercise-induced anaphylaxis. For determination of IgE-binding epitopes of HMW-glutenin overlapping peptides were synthesized and reactivities of IgE Abs in the sera of patients to those peptides were analyzed. Three IgE-binding epitopes, QQPGQ, QQPGQGQQ, and QQSGQGQ, were identified within primary sequence of HMW-glutenin. Epitope peptides, which include IgE-binding sequences of omega-5 gliadin and a HMW-glutenin, were synthesized and peptide-specific IgE Abs were measured by CAP-System fluorescent enzyme immunoassay. Twenty-nine of 30 patients with wheat-dependent exercise-induced anaphylaxis had specific IgE Abs to these epitope peptides. None of the 25 sera from healthy subjects reacted to both epitope peptides. Twenty-five patients with atopic dermatitis who had specific IgE to wheat and/or gluten had very low or nonexistent levels of epitope peptide-specific IgE Abs. These results indicated that measurement of IgE levels specific to epitope peptides of omega-5 gliadin and HMW-glutenin is useful as an in vitro diagnostic method for the assessment of patients with wheat-dependent exercise-induced anaphylaxis.  相似文献   

10.
Seeds of common buckwheat (Fagopyrum esculentum) contain valuable nutritive substances but also allergenic proteins that cause hypersensitive reactions. Thus, the development of hypoallergenic buckwheat would make this important pseudo-cereal available to allergic people. A major allergenic protein of buckwheat is Fag e 1. We isolated the respective cDNA, coding for a 22 kDa protein, from a recently developed autogamous strain of common buckwheat and confirmed its immunoglobulin E (IgE)-binding activity using recombinant Fag e 1 and sera of allergic patients. The derived amino acid sequence from Fag e 1 cDNA was used to synthesize an overlapping peptide library on nitrocellulose membranes for the determination of the Fag e 1 epitopes. We identified eight epitopes and the critical amino acids for IgE-binding within the epitopes. This epitope analysis of a major allergenic protein of buckwheat should help therapeutic efforts and aid in the development of hypoallergenic buckwheat.  相似文献   

11.
Thirteen cDNA clones encoding IgE-binding proteins were isolated from expression libraries of anthers of Brassica rapa L. and B. napus L. using serum IgE from a patient who was specifically allergic to Brassica pollen. These clones were divided into two groups, I and II, based on the sequence similarity. All the group I cDNAs predicted the same protein of 79 amino acids, while the group II predicted a protein of 83 amino acids with microheterogeneity. Both of the deduced amino acid sequences contained two regions with sequence similarity to Ca2+-binding sites of Ca2+-binding proteins such as calmodulin. However flanking sequences were distinct from that of calmodulin or other Ca2+-binding proteins. RNA-gel blot analysis showed the genes of group I and II were preferentially expressed in anthers at the later developmental stage and in mature pollen. The recombinant proteins produced in Escherichia coli was recognized in immunoblot analysis by the IgE of a Brassica pollen allergic patient, but not by the IgE of a non-allergic patient. The cDNA clones reported here, therefore, represent pollen allergens of Brassica species.  相似文献   

12.
Rice seed-based edible vaccines expressing T-cell epitope peptides derived from Japanese cedar major pollen allergens have been used to successfully suppress allergen-specific Th2-mediated immunoglobulin E (IgE) responses in mouse experiments. In order to further expand the application of seed-based allergen-specific immunotherapy for controlling Japanese cedar pollinosis, we generated transgenic rice plants that specifically express recombinant Cry j 1 allergens in seeds. Cry j 1 allergens give low specific IgE-binding activity but contain all of the T-cell epitopes. The allergens were expressed directly or as a protein fusion with the major rice storage protein glutelin. Fusion proteins expressed under the control of the strong rice endosperm-specific GluB-1 promoter accumulated in rice endosperm tissue up to 15% of total seed protein. The fusion proteins aggregated with cysteine-rich prolamin and were deposited in endoplasmic reticulum-derived protein body I. The production of transgenic rice expressing structurally disrupted Cry j 1 peptides with low IgE binding activity but spanning the entire Cry j1 region can be used as a universal, safe and effective tolerogen for rice seed-based oral immunotherapy for cedar pollen allergy in humans and other mammals.  相似文献   

13.
Designer proteins deprived of its IgE-binding reactivity are being sought as a regimen for allergen-specific immunotherapy. Although shrimp tropomyosin (Met e 1) has long been identified as the major shellfish allergen, no immunotherapy is currently available. In this study, we aim at identifying the Met e 1 IgE epitopes for construction of hypoallergens and to determine the IgE inhibitory capacity of the hypoallergens. IgE-binding epitopes were defined by three online computational models, ELISA and dot-blot using sera from shrimp allergy patients. Based on the epitope data, two hypoallergenic derivatives were constructed by site-directed mutagenesis (MEM49) and epitope deletion (MED171). Nine regions on Met e 1 were defined as the major IgE-binding epitopes. Both hypoallergens MEM49 and MED171 showed marked reduction in their in vitro reactivity towards IgE from shrimp allergy patients and Met e 1-sensitized mice, as well as considerable decrease in induction of mast cell degranulation as demonstrated in passive cutaneous anaphylaxis assay. Both hypoallergens were able to induce Met e 1-recognizing IgG antibodies in mice, specifically IgG2a antibodies, that strongly inhibited IgE from shrimp allergy subjects and Met e 1-sensitized mice from binding to Met e 1. These results indicate that the two designer hypoallergenic molecules MEM49 and MED171 exhibit desirable preclinical characteristics, including marked reduction in IgE reactivity and allergenicity, as well as ability to induce blocking IgG antibodies. This approach therefore offers promises for development of immunotherapeutic regimen for shrimp tropomyosin allergy.  相似文献   

14.
Chuang JG  Su SN  Chiang BL  Lee HJ  Chow LP 《Proteomics》2010,10(21):3854-3867
Although cockroaches are known to produce allergens that can cause IgE-mediated hypersensitivity reactions, including perennial rhinitis and asthma, the various cockroach allergens have not yet been fully studied. Many proteins from the German cockroach show high IgE reactivity, but have never been comprehensively characterized. To identify these potential allergens, proteins were separated by 2-DE and IgE-binding proteins were analyzed by nanoLC-MS/MS or N-terminal sequencing analysis. Using a combination of proteomic techniques and bioinformatic allergen database analysis, we identified a total of ten new B. germanica IgE-binding proteins. Of these, aldolase, arginine kinase, enolase, Hsp70, triosephosphate isomerase, and vitellogenin have been reported as allergens in species other than B. germanica. Analysis of the Food Allergy Research and Resource Program allergen database indicated that arginine kinase, enolase, and triosephosphate isomerase showed significant potential cross-reactivity with other related allergens. This study revealed that vitellogenin is an important novel B. germanica allergen. Personalized profiling and reactivity of IgE Abs against the panel of IgE-binding proteins varied between cockroach-allergic individuals. These findings make it possible to monitor the individual IgE reactivity profile of each patient and facilitate personalized immunotherapies for German cockroach allergy disorders.  相似文献   

15.
B6D2F1 mice were given three i.v. injections of ovalbumin (OA), and antigen-specific T cell clones were established from their spleen cells. One of the FcR+ T cell clones formed IgE-binding factors on incubation with OA-pulsed syngeneic macrophages. Neither soluble antigen nor macrophages alone induced factor formation. T cell hybridomas were constructed by fusion of the antigen-specific T cell clone with BW 5147 cells. Among 11 T cell hybridomas established, six clones produced IgE-binding factors on incubation with OA-pulsed BDF1 macrophages. Mouse IgE also induced the same hybridoma to form IgE-binding factors. The majority of IgE-binding factors formed by two T hybridomas and by those produced by the parent T cell clone had affinity for peanut agglutinin but for neither lentil lectin nor Con A. These hybridomas and the original T cell clone spontaneously released glycosylation-inhibiting factor, which inhibits the assembly of N-linked oligosaccharide(s) on IgE-binding factors. On antigenic stimulation, the T cell hybridomas produced both IgE-binding factors and IgG-binding factors. The IgE-binding factors consisted of three species with m.w. of 60,000, 30,000, and 15,000. Both the 60K and 15K IgE-binding factors selectively suppressed the IgE response of DNP-OA-primed rat mesenteric lymph node cells, whereas IgG-binding factors selectively suppressed the IgG response. The results indicate that antigen-primed FcR+ T cells produced IgE-suppressive factors and IgG-suppressive factors on antigenic stimulation. However, the T cell hybridomas were not committed to suppressive activity. When the hybridomas were stimulated by antigen in the presence of glycosylation-enhancing factor (GEF), the 60K, 30K, and 15K IgE-binding factors formed by the cells selectively potentiated the IgE response. IgG-binding factors formed by the cells in the presence of GEF failed to suppress the IgG response. It appears that antigen-specific FcR+ T cells regulate the antibody response through the formation of Ig-binding factors, but that the function of the cells could be switched from suppression to enhancement, depending on the environment of the cells.  相似文献   

16.
The yeast Malassezia furfur is a natural inhabitant of the human skin microflora that induces an allergic reaction in atopic dermatitis. To identify allergens of M. furfur, we separated a crude preparation of M. furfur antigens as discrete spots by 2-D PAGE and detected IgE-binding proteins using sera of atopic dermatitis patients. We identified the known allergens, Mal f 2 and Mal f 3, and determined N-terminal amino acid sequences of six new IgE-binding proteins including Mal f 4. The cDNA and genomic DNA encoding Mal f 4 were cloned and sequenced. The gene was mitochondrial malate dehydrogenase and encoded Mal f 4 composed of 315 amino acids and a signal sequence of 27 amino acids. We purified Mal f 4, which had a molecular mass of 35 kDa from a membrane fraction of a lysate of cultured cells. Thirty of 36 M. furfur-allergic atopic dermatitis patients (83.3%) had elevated serum levels of IgE to purified Mal f 4, indicating that Mal f 4 is a major allergen. There was a significant correlation of the Phadebas RAST unit values of Mal f 4 and the crude antigen, but not between Mal f 4 and the known allergen Mal f 2.  相似文献   

17.
Cells of the T cell hybridoma 23A4 produce IgE-binding factors lacking N-linked oligosaccharides (unglycosylated form) when they are incubated with IgE alone. In the presence of glycosylation-enhancing factor (GEF) or bradykinin, however, the same cells produce IgE-binding factors with N-linked oligosaccharides (glycosylated form). Switching the cells from the formation of unglycosylated IgE-binding factors to the formation of glycosylated factors was accompanied by the release of both glycosylation-inhibiting factor (GIF) in its phosphorylated form, i.e., phosphorylated lipomodulin, and arachidonate from the cells. Analysis of the biochemical processes for the release of GIF from 23A4 cells showed that affinity-purified GEF or bradykinin induced transient phospholipid methylation and diacylglycerol (DAG) formation, and enhanced 45Ca uptake into the cells. Inhibitors of methyltransferases, i.e., 3-deaza-adenosine plus L-homocysteine thiolactone, inhibited not only phospholipid methylation but also DAG formation and GIF release. Exogenously added 1-oleoyl-2-acetyl glycerol, i.e., a DAG that is permeable to the plasma membrane, induced the release of GIF from the cells. It was also found that 12-O-tetradecanoyl-phorbol 13-acetate (TPA) switched 23A4 cells and normal lymphocytes to the selective formation of N-glycosylated IgE-binding factor, and induced the release of GIF from the cells. 32PO4-labeled lipomodulin was detected in the extract of 23A4 cells 3 to 5 min after the addition of GEF, bradykinin, or TPA. These results indicate that GEF and bradykinin induced the activation of methyltransferases and phospholipase C for the formation of DAG, which in turn activated Ca2+-activated, phospholipid-dependent protein kinase (protein kinase C) for the phosphorylation of lipomodulin. Because lipomodulin loses phospholipase inhibitory activity after phosphorylation, increased phospholipase A2 activity would be expressed by this process.  相似文献   

18.
Bla g 2 is a cockroach allergen of great importance. This study was conducted to identify IgE-binding epitope(s) of Bla g 2 using the recombinant protein technique. Approximately 50% of tested sera showed IgE reactivity to Pichia-expressed Bla g 2 (PrBla g 2) and E. coli-expressed Bla g 2 (ErBla g 2). Only 5.3% of serum samples showed stronger reactivity to PrBla g 2 than ErBla g 2, indicating that serum was reactive to conformational or carbohydrate epitopes. The full-length and 5 peptide fragments of Bla g 2 were produced in E. coli. All fragments showed IgE-binding activity to the cockroach-allergy patients'' sera. Specifically, peptide fragments of amino acid residue 1-75 and 146-225 appeared to be important for IgE-binding. The information about the IgE-binding epitope of Bla g 2 can aid in the diagnosis and treatment for cockroach allergies.  相似文献   

19.
20.
A novel approach to localize and reconstruct conformational IgE-binding epitope regions of hevein (Hev b6.02), a major natural rubber latex allergen, is described. An antimicrobial protein (AMP) from the amaranth Amaranthus caudatus was used as an immunologically non-IgE-binding adaptor molecule to which terminal or central parts of hevein were fused. Hevein and AMP share a structurally identical core region but have different N-terminal and C-terminal regions. Only 1 of 16 hevein-allergic patients showed weak IgE binding to purified native or recombinant AMP. Chimeric AMP with the hevein N terminus was recognized by IgE from 14 (88%) patients, and chimeric AMP with the hevein C terminus was recognized by IgE from 6 (38%) patients. In contrast, chimeric AMP containing the hevein core region was recognized by IgE from only two patients. When both the N-terminal and C-terminal regions of hevein were fused with the AMP core, IgE from all 16 patients bound to the chimera. This chimera was also able to significantly inhibit (>70%) IgE binding to the native hevein. On the contrary, linear synthetic peptides corresponding to hevein regions in the AMP chimeras showed no significant IgE binding capacity in either enzyme-linked immunosorbent assay or inhibition enzyme-linked immunosorbent assay. These results suggest that the IgE binding ability of hevein is essentially determined by its N-terminal and C-terminal regions and that major IgE-binding epitopes of hevein are conformational. The chimera-based epitope mapping strategy described here provides a valuable tool for defining structural epitopes and creating specific reagents for allergen immunotherapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号