首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
转基因大豆是目前种植最广泛的转基因作物之一,其中具有耐除草剂特性的转基因大豆占比最高。公众对转基因食品一直争议不断,因此,其批准商业化种植前的食用安全性评价显得尤为重要。已有研究显示,转基因耐除草剂大豆已经商业化种植了二十多年,迄今为止还没有观察到任何不良反应。目前已经批准的转基因耐除草剂大豆均进行了严格的毒理学评价、过敏性评价和营养学评价,经过严格评价后上市的转基因大豆可以放心食用。综述了转基因耐除草剂大豆的主要类型,分析了可能存在的安全性问题,对转基因耐除草剂大豆的食用安全性评价方法进行了总结,以期为后续相关转基因食品安全性评价工作的开展提供借鉴。  相似文献   

2.
随着转基因技术的飞速发展,越来越多的转基因作物新品种培育成功。转基因作物以其抗病虫、抗除草剂、优质高产及环境友好型等优良性状被广泛种植,而随之引起的一系列生态风险也越来越引起人们的广泛关注。其中,外源基因漂移导致的生态风险问题是转基因作物环境安全性评价的重要内容之一,尤其在转基因作物19年的商业化种植过程中,外源基因漂移风险管理技术在生产中的应用更不容忽视。本文对转基因作物的花粉介导、种子介导、根际分泌物和无性繁殖器官介导等4种外源基因漂移的主要途径及其引起的生态风险和相关控制技术等进行了综述,以期为转基因作物的环境安全评价及生产中的科学监管提供科学依据。  相似文献   

3.
随着转基因植物的大面积种植,转基因植物的生态风险受到广泛关注,其中主要的风险是转基因植物与近缘物种之间的基因流及其影响。本文综述了目前商业化种植的转基因作物油菜、棉花、玉米和大豆,以及未商业化种植的水稻、小麦的基因流研究进展;分析了不同转基因作物与其近缘种之间发生基因流的频率和最远发生距离;介绍了降低基因流发生的方法。基因流频率受物种亲缘关系、花期重叠时间、风速风向等因素的影响,最远发生距离受气候条件、传粉媒介、地理条件等因素的影响。转基因作物与其近缘种之间的基因流频率与距花粉源的距离呈负相关关系(y=-0.59x-0.46,R2=0.25,P<0.01),亲缘关系近的基因流频率高。为了降低转基因植物与其近缘物种之间的基因流风险,建议采取“分区管理”的策略,并加强基因流发生之后的生态风险评价研究。  相似文献   

4.
转基因通过基因漂移可以渐渗到作物的野生近缘种,由此而导致的环境风险是全球广泛关注的生物安全问题.有3个关键因素可以决定环境风险的程度:特定空间距离的转基因漂移频率,转基因在野生近缘种中的表达水平,以及转基因为野生近缘种群体带来的适合度效应.本文将根据现有研究结果,从上述3方面对转基因漂移到非转基因栽培稻、杂草稻和野生稻造成的潜在环境影响进行回顾.栽培稻品种之间的基因漂移频率很低,可以通过空间隔离或其他方法使其降低到可忽略的水平.在共同分布的环境中,栽培稻基因(包括转基因)向杂草稻和野生稻的漂移不可避免.尽管抗虫转基因(Bt或Bt/CpTI)在栽培稻和野生近缘种杂交后代中可以正常表达,但由于在低虫压环境中,抗虫转基因不会明显改变野生近缘种的适合度,抗虫转基因漂移所造成的环境影响十分有限.因此对基因漂移而言,抗虫转基因栽培稻的商品化种植应该比较安全.然而,抗除草剂转基因渐渗到杂草稻或野生稻会改变群体的适合度,可能会引起不可预测的环境后果.  相似文献   

5.
转基因作物的全球大规模种植引起了全世界的广泛关注甚至争议。经过遗传改良并具有自然选择优势的转基因作物进入商品化种植,可能将带来环境生物安全的顾虑。在这些生物安全的顾虑中,转基因通过花粉介导的基因漂移向栽培作物的野生近缘种逃逸及其导致的潜在环境风险,就是世人最为关注的环境生物安全问题之一。包括中国在内的许多国家,在转基因作物进行商品化生产之前都必须对转基因逃逸及其带来的潜在环境风险进行严格评价。按照风险评价的框架,转基因向野生近缘种逃逸及其带来潜在环境风险的评价包括3个连续的步骤:1)检测转基因漂移到作物野生近缘种的频率;2)分析转基因在野生近缘种中的表达;3)确定转基因对野生近缘种群体适合度和进化潜力的影响。大量基因漂移的研究结果已表明,转基因通过基因漂移向栽培作物邻近的野生近缘种群体逃逸难以避免,而转基因也会在作物的野生近缘种群体中正常表达。因此分析和评价转基因为野生近缘种带来的适合度效应,对于转基因逃逸及其环境风险的评价至关重要。对适合度的概念及其进化意义进行介绍,并对如何利用转基因的适合度效应分析转基因逃逸的环境风险,以及对此类环境风险进行研究和评价的具体方法予以介绍。上述知识和方法的掌握将有助于人们对转基因作物环境生物安全及其评价的全面理解。  相似文献   

6.
陈彦君  关潇  任梦云 《应用生态学报》2020,31(12):4180-4188
近年来,随着转基因技术快速发展,转基因作物环境释放风险成为需要重点关注的问题,而对生物多样性的影响研究是客观评价其风险的重要手段。本研究以2018年海南春、冬两季转Cry1Ah基因抗虫玉米‘HGK60'及其对照常规玉米‘郑58'为研究对象,重点探讨了其对田间节肢动物、虫害及杂草多样性的影响。 结果表明: 田间调查共记录节肢动物43753头,隶属7目19科69种,转基因抗虫玉米HGK60与对照常规玉米郑58的节肢动物群落组成、结构及各生态指标均无显著差异;与郑58玉米相比,转基因抗虫玉米HGK60对钻蛀类害虫具有明显的抗性;田间杂草隶属8科16种,转基因抗虫玉米HGK60与郑58玉米田间杂草在密度及各生态指标上差异均不显著,且二者在整个生育期的变化趋势基本一致。说明转Cry1Ah基因抗虫玉米HGK60的种植对田间节肢动物及杂草多样性无显著的影响。该结果为转基因作物的环境风险研究提供了一定的数据支持。  相似文献   

7.
AgBiotech Reporter2005年22卷3期16页报道:欧洲联合研究中心已批准法国进行转基因作物大田种植试验的6项新的申请。这些作物包括了有利于杂草防治的抗除草剂转基因玉米品种。目前Meristem Therapeutics Pluriannulas公司正在对一个转基因玉米进行大田试验,藉以评价利用其生产保健品的性能。  相似文献   

8.
转基因作物的全球大规模种植引起了全世界的广泛关注甚至争议。经过遗传改良并具有自然选择优势的转基因作物进入商品化种植,可能将带来环境生物安全的顾虑。在这些生物安全的顾虑中,转基因通过花粉介导的基因漂移向栽培作物的野生近缘种逃逸及其导致的潜在环境风险,就是世人最为关注的环境生物安全问题之一。包括中国在内的许多国家,在转基因作物进行商品化生产之前都必须对转基因逃逸及其带来的潜在环境风险进行严格评价。按照风险评价的框架,转基因向野生近缘种逃逸及其带来潜在环境风险的评价包括3个连续的步骤:1)检测转基因漂移到作物野生近缘种的频率;2)分析转基因在野生近缘种中的表达;3)确定转基因对野生近缘种群体适合度和进化潜力的影响。大量基因漂移的研究结果已表明,转基因通过基因漂移向栽培作物邻近的野生近缘种群体逃逸难以避免,而转基因也会在作物的野生近缘种群体中正常表达。因此分析和评价转基因为野生近缘种带来的适合度效应,对于转基因逃逸及其环境风险的评价至关重要。对适合度的概念及其进化意义进行介绍,并对如何利用转基因的适合度效应分析转基因逃逸的环境风险,以及对此类环境风险进行研究和评价的具体方法予以介绍。上述知识和方法的掌握将有助于人们对转基因作物环境生物安全及其评价的全面理解。  相似文献   

9.
转基因作物对农田生物多样性影响评价是其大田释放和获得环境安全证书之前的必要环节。本研究通过大田试验,比较喷施清水及除草剂对转g10-epsps基因耐除草剂大豆ZUTS-33及其受体大豆HC-3和主栽品种大豆ZH-13的大田节肢动物多样性、病害发生、根瘤菌数量及杂草多样性的影响。结果表明: 与对照非转基因大豆HC-3和ZH-13相比,转基因大豆ZUTS-33田间节肢动物多样性指数(百株虫口数、Shannon多样性指数、Simpson优势度指数和Pielou均匀性指数)无显著差异,大豆主要病害发病率和病情指数无显著差异,根瘤菌数差异不显著,大豆田杂草多样性无显著差异;转基因大豆ZUTS-33喷施除草剂与转基因大豆ZUTS-33、非转基因对照HC-3和ZH-13喷施清水相比,节肢动物多样性、病害发生以及根瘤菌数量等差异均不显著,但杂草数量显著降低。  相似文献   

10.
卢宝荣  夏辉 《生命科学》2011,(2):186-194
转基因作物的商品化生产和大规模环境释放在带来巨大利益的同时,也引起了全球对其生物安全问题的广泛关注和争议,其中转基因通过花粉介导的基因漂移逃逸到非转基因作物及其野生近缘种,进而导致的潜在环境和生态风险就是备受争议的生物安全问题之一。转基因植物的环境生物安全涉及两方面关键问题:如何科学评价转基因植物商品化种植以后带来的环境和生态影响;如何利用环境生物安全的研究成果来制定科学有效的风险监测和管理措施。对转基因逃逸及其潜在生态风险的科学评价应包括三个重要环节:(1)检测转基因的逃逸的频率;(2)检测转基因逃逸后的表达和遗传规律;(3)确定逃逸后的转基因对野生近缘种群体适合度的影响及其进化潜力,本文将围绕对转基因逃逸及其潜在环境风险的科学评价,以转基因水稻为案例来对转基因逃逸带来生态影响的研究好评价的进展进行简要介绍,并对目前依据风险评价研究成果制定的各种管理策略进行了讨论。只有提高对转基因生物环境安全研究和评价的水平,并制定有效的风险监测和管理措施,才能为我国转基因技术的发展和转基因产品的商品化应用保驾护航。  相似文献   

11.
There is ongoing debate concerning the possible environmental and human health impacts of growing genetically modified (GM) crops. Here, we report the results of a life-cycle assessment (LCA) comparing the environmental and human health impacts of conventional sugar beet growing regimes in the UK and Germany with those that might be expected if GM herbicide-tolerant (to glyphosate) sugar beet is commercialized. The results presented for a number of environmental and human health impact categories suggest that growing the GM herbicide-tolerant crop would be less harmful to the environment and human health than growing the conventional crop, largely due to lower emissions from herbicide manufacture, transport and field operations. Emissions contributing to negative environmental impacts, such as global warming, ozone depletion, ecotoxicity of water and acidification and nutrification of soil and water, were much lower for the herbicide-tolerant crop than for the conventional crop. Emissions contributing to summer smog, toxic particulate matter and carcinogenicity, which have negative human health impacts, were also substantially lower for the herbicide-tolerant crop. The environmental and human health impacts of growing GM crops need to be assessed on a case-by-case basis using a holistic approach. LCA is a valuable technique for helping to undertake such assessments.  相似文献   

12.
Conventionally bred (CHT) and genetically modified herbicide-tolerant (GMHT) crops have changed weed management practices and made an important contribution to the global production of some commodity crops. However, a concern is that farm management practices associated with the cultivation of herbicide-tolerant (HT) crops further deplete farmland biodiversity and accelerate the evolution of herbicide-resistant (HR) weeds. Diversification in crop systems and weed management practices can enhance farmland biodiversity, and reduce the risk of weeds evolving herbicide resistance. Therefore, HT crops are most effective and sustainable as a component of an integrated weed management (IWM) system. IWM advocates the use of multiple effective strategies or tactics to manage weed populations in a manner that is economically and environmentally sound. In practice, however, the potential benefits of IWM with HT crops are seldom realized because a wide range of technical and socio-economic factors hamper the transition to IWM. Here, we discuss the major factors that limit the integration of HT crops and their associated farm management practices in IWM systems. Based on the experience gained in countries where CHT or GMHT crops are widely grown and the increased familiarity with their management, we propose five actions to facilitate the integration of HT crops in IWM systems within the European Union.  相似文献   

13.
Human health risks associated with changes in synthetic chemical pesticide use following the introduction of genetically modified crops are quantified in this article. Bacillus thuringiensis ( Bt ) cotton and herbicide-tolerant (HT) soybean, two genetically modified crops, were chosen as the focus for this study based on their global popularity. An innovative multimedia total exposure model, CalTOX, was used to calculate the health risks for two target populations, before and after the introduction of Bt cotton and HT soybean. Major results include the quantification of incremental lifetime cancer risk based on a time-weighted average exposure, and the quantification of hazard ratios for non-cancer effects based on the maximum exposure rate value, both computed over the exposure duration. Results show that human health risks are not intuitively and necessarily reduced with the reduction of pesticide use. For example, more trifluralin was used after the introduction of HT soybeans in Iowa and Minnesota, leading to higher risks. Moreover, the general population may have larger exposures to pesticides when compared with the population living in areas where pesticides are actually applied. This may occur because exposure to pesticides is not only dependent on geographical distance from the contaminated area, but also strongly dependent on other factors, such as the characteristic travel distance and environmental persistence.  相似文献   

14.
Biodiversity is threatened by agriculture as a whole, and particularly also by traditional methods of agriculture. Knowledge-based agriculture, including GM crops, can reduce this threat in the future. The introduction of no-tillage practices, which are beneficial for soil fertility, has been encouraged by the rapid spread of herbicide-tolerant soybeans in the USA. The replacement of pesticides through Bt crops is advantageous for the non-target insect fauna in test-fields. The results of the British Farm Scale experiment are discussed. Biodiversity differences can mainly be referred to as differences in herbicide application management.  相似文献   

15.
Outcrosses from genetically modified (GM) to conventional crops by pollen-mediated gene flow (PMGF) are a concern when growing GM crops close to non-GM fields. This also applies to the experimental releases of GM plants in field trials. Therefore, biosafety measures such as isolation distances and surveying of PMGF are required by the regulatory authorities in Switzerland. For two and three years, respectively, we monitored crop-to-crop PMGF from GM wheat field trials in two locations in Switzerland. The pollen donors were two GM spring wheat lines with enhanced fungal resistance and a herbicide tolerance as a selection marker. Seeds from the experimental plots were sampled to test the detection method for outcrosses. Two outcrosses were found adjacent to a transgenic plot within the experimental area. For the survey of PMGF, pollen receptor plots of the conventional wheat variety Frisal used for transformation were planted in the border crop and around the experimental field up to a distance of 200 m. Although the environmental conditions were favorable and the donor and receptor plots flowered at the same time, only three outcrosses were found in approximately 185,000 tested seedlings from seeds collected outside the experimental area. All three hybrids were found in the border crop surrounding the experimental area, but none outside the field. We conclude that a pollen barrier (border crop) and an additional isolation distance of 5 m is a sufficient measure to reduce PMGF from a GM wheat field trial to cleistogamous varieties in commercial fields below a level that can be detected.  相似文献   

16.
The commercial use of genetically modified (GM) crops requires prior assessment of the risks to the environment when these crops are grown in the field or distributed. Assessments protocols vary across countries and GM crop events, but there is a common need to assess environmental biosafety. In this study, we conducted an environmental risk assessment in a confined field of GM tomato plants that can produce miraculin, a taste-altering protein that causes sour tastes to be perceived as sweet, for practical use in Japan. The evaluation was conducted for 1) competitiveness (the ability to compete with wild plants for nutrients, sunlight, and growing areas and prevent their growth) and 2) the production of toxic substances (the ability to produce substances that interfere with the habitat and growth of wild plants, animals, and microorganisms). Investigations of plant morphology and growth characteristics as well as tolerance to low temperature during early growth and overwintering for assessment endpoints related to competitiveness showed no biologically meaningful difference between GM tomato and non-GM tomato. In addition, harmful substances in plant residues and root secretions were assessed by the plow-in method, succeeding crop test and soil microflora tests, and it was determined that GM tomato does not exhibit an increase in harmful substances. Based on these results, it was concluded that GM miraculin-accumulating tomato is comparable to conventional tomato and is unlikely to have unintended adverse effects in the natural environment of Japan.  相似文献   

17.
The effects of the management of genetically modified herbicide-tolerant (GMHT) crops on the abundances of aerial and epigeal arthropods were assessed in 66 beet, 68 maize and 67 spring oilseed rape sites as part of the Farm Scale Evaluations of GMHT crops. Most higher taxa were insensitive to differences between GMHT and conventional weed management, but significant effects were found on the abundance of at least one group within each taxon studied. Numbers of butterflies in beet and spring oilseed rape and of Heteroptera and bees in beet were smaller under the relevant GMHT crop management, whereas the abundance of Collembola was consistently greater in all GMHT crops. Generally, these effects were specific to each crop type, reflected the phenology and ecology of the arthropod taxa, were indirect and related to herbicide management. These results apply generally to agriculture across Britain, and could be used in mathematical models to predict the possible long-term effects of the widespread adoption of GMHT technology. The results for bees and butterflies relate to foraging preferences and might or might not translate into effects on population densities, depending on whether adoption leads to forage reductions over large areas. These species, and the detritivore Collembola, may be useful indicator species for future studies of GMHT management.  相似文献   

18.
赵艳  李燕燕 《遗传》2013,35(12):1360-1367
安全性评价是转基因农作物商品化应用的必要环节。组学技术能在转录物、蛋白质、代谢物水平上对转基因农作物进行无偏倚的安全性评价。文章综述了近10年来应用转录组学、蛋白质组学和代谢物组学技术评价转基因农作物非预期效应的研究进展, 结果表明在转基因农作物非预期变异中, 环境因素(种植地点和季节)和基因型差异比转基因本身的影响更大。  相似文献   

19.
The transgenic traits associated with the majority of commercial genetically modified crops are focused on improving herbicide and insecticide management practices. The use of the transgenic technology in these crops and the associated chemistry has been the basis of studies that provide evidence for occasional improvement in environmental benefits due to the use of less residual herbicides, more targeted pesticides, and reduced field traffic. This is nicely exemplified through studies using Environmental Impact Quotient (EIQ) assessments. Whilst EIQ evaluations may sometimes illustrate environmental benefits they have their limitations. EIQ evaluations are not a surrogate for Environmental Risk Assessments and may not reflect real environmental interactions between crops and the environment. Addressing the impact cultivated plants have on the environment generally attracts little public attention and research funding, but the introduction of GM has facilitated an expansion of research to address potential environmental concerns from government, NGOs, industry, consumers, and growers. In this commentary, some evidence from our own research and several key papers that highlight EIQ assessments of the impact crops are having on the environment are presented. This information may be useful as an education tool on the potential benefits of GM and conventional farming. In addition, other deliberate, accidental, and GM-driven benefits derived from the examination of GM cropping systems is briefly discussed.  相似文献   

20.
As a developing country with relatively limited arable land, China is making great efforts for development and use of genetically modified (GM) crops to boost agricultural productivity. Many GM crop varieties have been developed in China in recent years; in particular, China is playing a leading role in development of insect-resistant GM rice lines. To ensure the safe use of GM crops, biosafety risk assessments are required as an important part of the regulatory oversight of such products. With over 20 years of nationwide promotion of agricultural biotechnology, a relatively well-developed regulatory system for risk assessment and management of GM plants has been developed that establishes a firm basis for safe use of GM crops. So far, a total of seven GM crops involving ten events have been approved for commercial planting, and 5 GM crops with a total of 37 events have been approved for import as processing material in China. However, currently only insect-resistant Bt cotton and disease-resistant papaya have been commercially planted on a large scale. The planting of Bt cotton and disease-resistant papaya have provided efficient protection against cotton bollworms and Papaya ringspot virus (PRSV), respectively. As a consequence, chemical application to these crops has been significantly reduced, enhancing farm income while reducing human and non-target organism exposure to toxic chemicals. This article provides useful information for the colleagues, in particular for them whose mother tongue is not Chinese, to clearly understand the biosafety regulation and commercial use of genetically modified crops in China.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号