首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The roles of sarcolemmal ATP-sensitive K+ (sarcK(ATP)) and mitochondrial ATP-sensitive K+ (mitoK(ATP)) channels in the cardioprotection induced by K(ATP) channel openers remain unclear, though the mitoK(ATP) channel has been proposed to be involved as a subcellular mediator in cardioprotection afforded by ischemic preconditioning (PC). In the present study, selective inhibitors of the sarcK(ATP) and mitoK(ATP) channels were used to examine the role of each channel subtype in infarct size limitation by KATP channel openers. Isolated rabbit hearts were perfused in the Langendorff mode with monitoring of the activation recovery interval (ARI) and subjected to 30-min global ischemia/2-h reperfusion to induce infarction. Before ischemia, hearts received 10 microM pinacidil, 100 microM diazoxide, or PC with or without preceding infusion of a sarcK(ATP) channel-selective blocker (5 microM HMR1098) or a mitoK(ATP) channel-selective blocker (100 microM 5-hydroxydecanoate, 5-HD). ARI, an index of action potential duration, was shortened from 118+/-3 ms to 77+/-5 ms after 10 min of ischemia in untreated control hearts. Pinacidil shortened ARI before ischemia from 113+/-2 ms to 78+/-5 ms and enhanced the ARI shortening during ischemia. Diazoxide did not affect ARI before ischemia but accelerated ischemia-induced shortening of ARI. Infarct size as a percentage of the left ventricle (%IS/LV) was reduced by pinacidil and diazoxide from the control value of 47.2+/-4.0% to 4.5+/-1.5% and 5.2+/-1.2%, respectively. HMR1098 significantly inhibited the shortening of ARI by ischemia, pinacidil and diazoxide and partially blocked infarct size limitation by these K(ATP) channel openers (%IS/LV=32.6+/-4.2% and 23.4+/-5.3%, respectively). Infusion of 5-HD did not modify the change in ARI caused by the K(ATP) channel openers but completely abolished cardioprotection (%IS/LV=46.0+/-6.2% with pinacidil and 57.2+/-7.0% with diazoxide). PC with two episodes of 5-min ischemia limited %IS/LV to 21.6+/-4.0%, and this protection was not inhibited by HMR1098. Neither HMR1098 nor 5-HD alone modified infarct size. In conclusion, both sarcK(ATP) and mitoK(ATP) channels may contribute to the anti-infarct tolerance afforded by pinacidil and diazoxide.  相似文献   

3.
Many mammalian cells have two distinct types of ATP-sensitive potassium (K(ATP)) channels: the classic ones in the surface membrane (sK(ATP)) and others in the mitochondrial inner membrane (mitoK(ATP)). Cardiac mitoK(ATP) channels play a pivotal role in ischemic preconditioning, and thus represent interesting drug targets. Unfortunately, the molecular structure of mitoK(ATP) channels is unknown, in contrast to sK(ATP) channels, which are composed of a pore-forming subunit (Kir6.1 or Kir6.2) and a sulfonylurea receptor (SUR1, SUR2A, or SUR2B). As a means of probing the molecular makeup of mitoK(ATP) channels, we compared the pharmacology of native cardiac mitoK(ATP) channels with that of molecularly defined sK(ATP) channels expressed heterologously in human embryonic kidney 293 cells. Using mitochondrial oxidation to index mitoK(ATP) channel activity in rabbit ventricular myocytes, we found that pinacidil and diazoxide open mitoK(ATP) channels, but P-1075 does not. On the other hand, 5-hydroxydecanoic acid (5HD), but not HMR-1098, blocks mitoK(ATP) channels. Although pinacidil is a nonselective activator of expressed sK(ATP) channels, diazoxide did not open channels formed by Kir6.1/SUR2A, Kir6.2/SUR2A (known components of cardiac sK(ATP) channels) or Kir6.2/SUR2B. P-1075 activated all the K(ATP) channels, except Kir6.1/SUR1 channels. Glybenclamide potently blocked all sK(ATP) channels, but 5HD only blocked channels formed by SUR1/Kir6.1 or Kir6.2 (IC(50)s of 66 and 81 microM, respectively). This potency is similar to that for block of mitoK(ATP) channels (IC(50) = 95 microM). In addition, HMR-1098 potently blocked Kir6.2/SUR2A channels (IC(50) = 1.5 microM), but was 67 times less potent in blocking Kir6.1/SUR1 channels (IC(50) = 100 microM). Our results demonstrate that mitoK(ATP) channels closely resemble Kir6.1/SUR1 sK(ATP) channels in their pharmacological profiles.  相似文献   

4.
1. Dogs, anaesthetized with chloralose and urethane, were subjected to a 25 min occlusion of the left anterior descending coronary artery. This resulted in ventricular ectopic activity, a reduction in baroreflex sensitivity (BRS, measured following the intravenous administration of phenylephrine), elevations in the epicardial ST-segment and increases in the degree of inhomogeneity of electrical activation, both measured from the ischaemic region of the left ventricular wall. 2. These changes were markedly reduced when the 25 min occlusion was preceded, 20 min earlier, by a 5 min (preconditioning) occlusion of the same coronary artery (e.g. VF during ischaemia reduced from 40% in the controls to 0%; P<0.05; BRS increased from 1.22+/-0.23 pre-occlusion to 1.61+/-0.25 mmHg ms(-1) post-occlusion in preconditioned dogs; cf. 1.28+/-0.29 to 0.45+/-0.12 mmHg ms(-1) respectively in the controls, P<0.05). 3. These beneficial effects of preconditioning were prevented by the administration, 10 min prior to the 25 min coronary artery occlusion, of atropine (1 mg kg(-1) i.v. followed by a continuous infusion of 0.04 mg kg(-1) h(-1)). For example, VF during occlusion was increased from 0% in the preconditioned dogs to 40% (P<0.05) in the presence of atropine and BRS was again reduced during occlusion (from 1.75+/-0.29 to 0.30+/-0.08 mmHg ms(-1); P<0.05). 4. We conclude that preconditioning reduces arrhythmia severity during ischaemia by favourably modifying cardiac autonomic receptor mechanism through enhancing vagal influences.  相似文献   

5.
1. ATP-sensitive potassium channel in the mitochondrial inner membrane (mitoK(ATP) channel) rather than in the sarcolemma (sarcK(ATP) channel) appears to play an important role in cardioprotection. We examined the effect of minoxidil, a potent antihypertensive agent and hair growth stimulator, on sarcK(ATP) and mitoK(ATP) channels in guinea-pig ventricular myocytes. 2. Minoxidil activated a glybenclamide-sensitive sarcK(ATP) channel current in the whole-cell recording mode with an EC(50) of 182.6 microm. Minoxidil reversibly increased the flavoprotein oxidation, an index of mitoK(ATP) channel activity, in a concentration-dependent manner. The EC(50) for mitoK(ATP) channel activation was estimated to be 7.3 microm; this value was notably approximately 25-fold lower than that for sarcK(ATP) channel activation. 3. Minoxidil (10 microm) significantly attenuated the ouabain-induced increase of mitochondrial Ca(2+) concentration, which was measured by loading cells with rhod-2 fluorescence. Furthermore, pretreatment with minoxidil (10 microm) before 20-min no-flow ischaemia significantly improved the recovery of developed tension measured after 60 min of reperfusion in coronary perfused guinea-pig ventricular muscles. These cardioprotective effects of minoxidil were completely abolished by the mitoK(ATP) channel blocker 5-hydroxydecanoate (500 microm). 4. Our results indicate that minoxidil exerts a direct cardioprotective effect on heart muscle cells, an effect mediated by the selective activation of mitoK(ATP) channels.  相似文献   

6.
1. Activation of mitochondrial KATP (mitoKATP) channels and protein kinase C (PKC) has been implicated in cardioprotective mechanisms of ischaemic preconditioning (IPC). However, the exact role of these events in early IPC remains unclear. 2. Isolated and perfused rat hearts underwent IPC with three cycles of 5 min ischaemia and 5 min reperfusion. The heart was subjected to 30 min global ischaemia followed by 120 min reperfusion. Flavoprotein oxidation was monitored to assess mitoKATP channel activity. Cardioprotection was evaluated by recovery of isovolumic left ventricular (LV) function and infarct size. 3. Diazoxide (50 mgr;mol/L) increased flavoprotein oxidation and conferred cardioprotection in a manner sensitive to the selective mitoKATP channel blocker 5-hydroxydecanoate (5-HD; 0.5 mmol/L). 4. Pretreatment with 0.5 mmol/L 5-HD abrogated IPC-induced flavoprotein oxidation and cardioprotection, whereas late treatment with 5-HD after IPC required a higher dose (2 mmol/L) to abolish flavoprotein oxidation and cardioprotection afforded by IPC. 5. Pretreatment with the PKC inhibitors Ro318425 (1 micro mol/L) and chelerythrine (5 micro mol/L) abolished IPC-induced flavoprotein oxidation and cardioprotection, whereas late treatment with Ro318425 required a higher dose (4 micro mol/L) to abolish flavoprotein oxidation and cardioprotection. 6. In conclusion, these results suggest that activation of mitoKATP channels is the trigger and the mediator of IPC and that PKC plays a crucial role in both phases of mitoKATP channel activation, although mitoKATP channels and PKC may be more activated during the mediator phase.  相似文献   

7.
The role of K(ATP) channels in the antiarrhythmic effect of Escherichia coli endotoxin-induced nitric oxide synthase (iNOS) was examined in an anesthetised rat model of myocardial ischemia and reperfusion arrhythmia by using glibenclamide (1 mg kg(-1)), nateglinide (10 mg kg(-1)) and repaglinide (0.5 mg kg(-1)). Endotoxin (1 mg kg(-1)) was administered intraperitoneally 4 h before the occlusion of the left coronary artery and glibenclamide, nateglinide or repaglinide was administered 30 min before coronary artery occlusion. We also evaluated the effects of K(ATP) channel blockers and nonselective K(+) channel blocker tetraethylammonium (TEA) on cardiac action potential configuration in the atria obtained from endotoxemic rats. The mean arterial blood pressure of rats receiving endotoxin was lower during both the occlusion and reperfusion periods. Endotoxin significantly reduced the total number of ectopic beats and the duration of ventricular tachycardia. Glibenclamide, but not nateglinide and repaglinide, prevented the hypotension and antiarrhythmic effects of endotoxin. Atria obtained from endotoxin-treated rats had prolonged action potential duration. This effect was abolished with pretreatment of iNOS inhibitors, l-canavanine and dexamethasone and perfusion of glibenclamide, but not with TEA and non-sulfonylurea drug, nateglinide. We demonstrated that glibenclamide inhibits the antiarrhythmic effect of endotoxin and this effect does not appear to involve K(ATP) channels.  相似文献   

8.
9.
We investigated the effects of administration of non-hypotensive doses of ATP-sensitive K+ channel (K(ATP)) openers (nicorandil and aprikalim), and a specific mitochondrial K(ATP) channel blocker (5-hydroxydecanoate) prior to and during coronary occlusion as well as prior to and during post-ischemic reperfusion on survival rate, ischemia/reperfusion-induced arrhythmias and myocardial infarct size in anesthetized albino rabbits. Arrhythmias were induced by reperfusion following a 20 min ligation of the left main coronary artery with a releaseable silk ligature. Early intervention by intravenous infusion of nicorandil (100 microg/kg bolus+10 microg/kg/min) or aprikalim (10 microg/kg bolus+0.1 microg/kg/min) just before and during ischemia increased survival rate (86% and 75% vs. 55% in the control group), significantly decreased the incidence and severity of life-threatening arrhythmias and myocardial infarct size. The antiarrhythmic and cardioprotective effects of both nicorandil and aprikalim were abolished by pretreating the rabbits with 5-hydroxydecanoate (5 mg/kg, i.v. bolus). In conclusion, intervention by intravenous administration of nicorandil and aprikalim (through the selective activation of mitochondrial K(ATP) channels) increased survival rate and exhibited antiarrhythmic and cardioprotective effects during coronary occlusion and reperfusion in anesthetized rabbits when administered prior to and during coronary occlusion.  相似文献   

10.
1. The possibility that bradykinin is involved in the pronounced antiarrhythmic effects of ischaemic preconditioning in anaesthetized mongrel dogs was examined with the use of the selective B2 antagonist, icatibant (Hoe-140). 2. Preconditioning, achieved by two 5 min occlusions of the left anterior descending coronary artery, followed 20 min later by a 25 min occlusion of the same artery resulted, during this prolonged occlusion, in less severe arrhythmias (VF 0% versus 47% in control non-preconditioned dogs), reductions in the incidence and number of episodes of ventricular tachycardia (VT) and in the number of ventricular premature beats and increased survival following reperfusion (50% versus 0% in the controls). 3. Hoe-140 was given in a dose of 300 micrograms kg-1 either before the preconditioning procedure or after preconditioning but before the prolonged occlusion. This dose of Hoe-140 had insignificant haemodynamic effects and failed to modify the increase in coronary blood flow that occurred in the circumflex coronary artery when the anterior descending branch was occluded. 4. It was difficult to precondition dogs in the presence of Hoe-140. There were more ventricular arrhythmias during the initial 5 min occlusion (44 +/- 12 versus 10 +/- 3) and a higher incidence of ventricular fibrillation (50% versus 21%) during the preconditioning procedure. There was also a more pronounced ST-elevation (recorded from epicardial electrodes) during the preconditioning occlusions in those dogs given Hoe-140. 5. In those dogs that survived to the long (25 min) occlusion, Hoe-140 prevented the antiarrhythmic effects of preconditioning (reduction in ventricular premature beats and in VT) although all the dogs survived the occlusion period.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
In this study, we tested the effects of the stilbene disulphonates DIDS and SITS on three different types of cloned K(ATP) channel (Kir6.2/SUR1, Kir6.2/SUR2A and Kir6.2DeltaC) heterologously expressed in XENOPUS: oocytes, with the aim of identifying the part of the channel which is involved in mediating disulphonate inhibition. We found that the inhibitory site(s) for these drugs lies within the Kir6.2 subunit of the channel, although its properties are further modulated by the sulphonylurea (SUR) subunit. In particular, SUR2A reduces both the rate and extent of block, by impairing the ability of DIDS binding to produce channel closure. The disulphonate-binding site interacts with the ATP inhibitory site on Kir6.2 because ATP is able to protect against irreversible channel inhibition by disulphonates. This effect is not mimicked by tolbutamide (at a concentration that interacts with Kir6.2) and is abolished by mutations that render the channel ATP insensitive. A number of point mutations in both the N and C termini of Kir6.2 reduced the extent and reversibility of channel inhibition by SITS. The results are consistent with the idea that residue C42 of Kir6.2 is likely to be involved in covalently linking of SITS to the channel. Other types of Kir channel (Kir1.1, Kir2.1 and Kir4.1) were also irreversibly blocked by DIDS, suggesting that these channels may share common binding sites for these stilbene disulphonates.  相似文献   

12.
目的:研究缺血预处理对大鼠缺血再灌注损伤小肠的保护作用是否由K_(ATP)通道开放剂介导的,方法:用短暂反复夹闭肠系膜上动脉诱导预处理,观察其对长期缺血再灌注损伤小肠的保护作用,并用K_(ATP)通道开放剂色满卡林(Cro)和拮抗剂格列苯脲(Gli)进一步探讨其作用机制,结果:预处理对大鼠缺血再灌注损伤小肠具有保护作用,其作用可被Cro模拟,并被Gli取消,结论:预处理对大鼠缺血再灌注损伤小肠的保护作用是由K_(ATP)通道开放剂介导的。  相似文献   

13.
The estrogens prevent cardiovascular diseases that among other effects could be related to the modulation of the vascular tone via modifying ionic channel permeability. ATP-sensitive K(+) (K(ATP)) channels seem to be involved in diethylstilbestrol-induced relaxation in isolated rat aorta precontracted by noradrenaline (30 nM), since the effect is inhibited by glibenclamide (1--10 microM), and 1 mM tetraethylammonium, but not by 30 mM tetraethylammonium or paxilline. The antiestrogen tamoxifen, the inhibitor of protein kinase A, Rp-cAMPS, and the inhibitor of ornithine decarboxylase, difluoromethylornithine, antagonized diethylstilbestrol-induced relaxation. The association of glibenclamide with these compounds separately did not modify the effect of glibenclamide alone on diethylstilbestrol-induced relaxation. Functional K(ATP) channels are present in rat aorta, since diazoxide induced relaxation sensitive to glibenclamide. Papaverine, dibutyryl cyclic AMP and spermine relaxed isolated rat aorta although this was not sensitive to glibenclamide. The relaxation to forskolin was antagonized by glibenclamide. We conclude that diethylstilbestrol-induced relaxation in rat aorta is related to the modulation of K(ATP) channels. Cyclic AMP-dependent mechanisms and polyamine synthesis may mediate this modulation.  相似文献   

14.
Insulin secretagogues, sulfonylurea receptors and K(ATP) channels   总被引:2,自引:0,他引:2  
ATP-sensitive K+ channels, termed K(ATP) channels, provide a link between cellular metabolism and membrane electrical activity in a variety of tissues. Channel isoforms have been identified and are targets for compounds that both stimulate and inhibit their activity resulting in membrane hyperpolarization and depolarization, respectively. Examples include relaxation of vascular smooth muscle and stimulation of insulin secretion. This article reviews the cloning, molecular biology, and structure of K(ATP) channels, with particular focus on the SUR1/K(IR)6.2 neuroendocrine channels that are important for the regulation of insulin secretion. We integrate the extensive pharmacologic structure-activity-relationship data on these channels, which defines a bipartite drug binding pocket in the SUR (sulfonylurea receptor), with recent structure-function studies that identify domains of SUR and K(IR)6.2, the channel pore, which are critical for channel assembly, for gating, and for the ligand-receptor interactions that modulate channel activity. The atomic structure of a sulfonylurea in a protein pocket is used to develop insight into the recognition of these compounds. A homology model of K(ATP) channels, based on VC-MsbA, another member of the ABC protein family, is described and used to position amino acids important for the action of channel openers and blockers within the core of SUR. The model has a central chamber which could serve as a multifaceted binding pocket.  相似文献   

15.
Sarcolemmal ATP-sensitive K(+) (K(ATP)) channels are abundant in cardiac myocytes where they couple the cellular metabolic state with membrane excitability. Structurally, these channels are composed of Kir6.2, a pore-forming subunit, SUR2A, a regulatory subunit, and at least four accessory proteins. The activation of K(ATP) channels occurs during ischaemia to promote cardiac viability under this adverse condition. Age-dependent changes in the myocardial susceptibility to ischaemia have been reported in experimental animals as well as in humans. Recent research has demonstrated that ageing is associated with a decrease in the number of cardiac sarcolemmal K(ATP) channels in hearts from females, but not males. This alteration is likely to be due to an age-dependent decrease in the concentration of circulating estrogens. In the heart, SUR2A is the least expressed protein of all K(ATP) channel-forming proteins. The consequence of this phenomenon is that the level of SUR2A is the main factor controlling the number of sarcolemmal K(ATP) channels. Estrogens specifically up-regulate SUR2A and govern the number of sarcolemmal K(ATP) channels, and this may explain the effect of decreasing estrogen levels on the heart. An age-dependent decrease in the number of sarcolemmal K(ATP) channels generates a cardiac phenotype more sensitive to ischaemia, which seems to be responsible for the ageing-associated decrease in myocardial tolerance to stress that occurs in elderly women.  相似文献   

16.
Levosimendan is a mitochondrial K(ATP) channel opener.   总被引:4,自引:0,他引:4  
Levosimendan, a new inodilator developed for the treatment of heart failure has been shown to have a vasodilatory effect via opening of K(ATP) channels in the plasma membrane of vascular smooth muscle cells. In this study, we investigated the effects of levosimendan on the mitochondrial K(ATP) channel. This compound did not influence mitochondrial transmembrane potential (DeltaPsi), and at up to 2.2 microM had no effect on the respiration rate of rat liver mitochondria, respiring on 5 mM succinate (+5 microM rotenone). A sensitive method was developed for assessing K(ATP) channel opening activity employing rat liver mitochondria, respiring only on endogenous substrates in the presence of 400 microM ATP and 1 microg oligomycin/mg mitochondrial protein. In this model, levosimendan (0.7-2.6 microM) decreased DeltaPsi by 6.5-40.4% (n=3, incubation time 15 min). This effect was dependent on the K+ concentration in the incubation medium and was abolished by the selective blocker of the mitochondrial K(ATP) channel-5-hydroxydecanoate (200 microM). Our results indicate that levosimendan opens mitochondrial K(ATP) channels.  相似文献   

17.
Ligand-based virtual screening approaches were applied to search for new chemotype KCOs activating Kir6.2/SUR1 KATP channels. A total of 65 208 commercially available compounds, extracted from the ZINC archive, served as database for screening. In a first step, pharmacokinetic filtering via VolSurf reduced the initial database to 1913 compounds. Afterward, six molecules were selected as templates for similarity searches: similarity scores, obtained toward these templates, were calculated with the GRIND, FLAP, and TOPP approaches, which differently encode structural information into potential pharmacophores. In this way, we obtained 32 hit candidates, 16 via GRIND and eight each via FLAP and TOPP. For biological testing of the hit candidates, their effects on membrane potentials in HEK 293 cells expressing Kir6.2/SUR1 were studied. GRIND, FLAP, and TOPP all yielded hits, but no method top-ranked all the actives. Thus, parallel application of different approaches probably improves hit detection.  相似文献   

18.
Aim: To study the effect of 5-hydroxydecanoate (5-HD) on the proliferation of 24 h hypoxic human pulmonary artery smooth muscle cells (HPASMC) and to explore the pharmacological mechanisms of 5-HD as an inhibitor of mitochondrial membrane ATP-sensitive potassium channel activation. Methods: Normoxic or hypoxic HPASMC in culture were stimulated by either diazoxide or 5-HD for 24 h. The proliferation of HPASMC was examined by 3- (4,5-dimethyl-2-thiazol-yl) -2,5- diphenyl- 2H-tetrazolium bromide (MTr) assay and proliferating cell nuclear antigen (PCNA) immunohistochemistry staining. The apoptosis of HPASMC was assessed by terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) assay and flow cytometric analysis. The relative changes in mitochondrial membrane potential (ΔΨm) were measured using the rhodamine fluorescence (R-123) technique. Results: Both hypoxia and diazoxide stimulation increased ΔΨm value measured by the absorbance of MTT, PCNA-positive staining and decreased TUNEL-positive staining and apoptotic cells in HPASMC. Hypoxia and the concomitant stimulation of diazoxide obviously enhanced the effects of hypoxia or diazoxide alone. 5-HD significantly attenuated the effects in each of the above conditions. Additionally, 5-HD partially inhibited the effect of hypoxia on R-123 fluorescence intensity in HPASMC. Conclusion: 5-HD can inhibit the proliferation of hypoxic HPASMC by blocking mitochondrial KATP channels.  相似文献   

19.
K(ATP) channels: linker between phospholipid metabolism and excitability   总被引:3,自引:0,他引:3  
ATP-sensitive potassium (K(ATP)) channels couple electrical activity to cellular metabolism via their inhibition by intracellular ATP. When examined in excised patches, ATP concentrations required for half-maximal inhibition (IC(50)) varied among tissues and were reported to be as low as 10 microM. This set up a puzzling question on how activation of K(ATP) channels can occur under physiological conditions, where the cytoplasmic concentration of ATP is much higher than that required for channel inhibition. A new twist was added to this puzzle when two recent reports showed that phospholipids such as phosphatidylinositol-4,5-bisphosphate (PIP(2)) and phosphatidyl-4-phosphate (PIP) are able to shift ATP-sensitivity of K(ATP) channels from the micro- into the millimolar range and thus provide a mechanism for physiological activation of the channels. This commentary describes how phospholipids control ATP inhibition of K(ATP) channels and how this mechanism is regulated effectively by receptor-mediated stimulation of phospholipase C.  相似文献   

20.

BACKGROUND AND PURPOSE

Rosiglitazone is an anti-diabetic drug acting as an insulin sensitizer. We recently found that rosiglitazone also inhibits the vascular isoform of ATP-sensitive K+ channels and compromises vasodilatory effects of β-adrenoceptor activation and pinacidil. As its potency for the channel inhibition is in the micromolar range, rosiglitazone may be used as an effective KATP channel inhibitor for research and therapeutic purposes. Therefore, we performed experiments to determine whether other isoforms of KATP channels are also sensitive to rosiglitazone and what their sensitivities are.

EXPERIMENTAL APPROACH

KIR6.1/SUR2B, KIR6.2/SUR1, KIR6.2/SUR2A, KIR6.2/SUR2B and KIR6.2ΔC36 channels were expressed in HEK293 cells and were studied using patch-clamp techniques.

KEY RESULTS

Rosiglitazone inhibited all isoforms of KATP channels in excised patches and in the whole-cell configuration. Its IC50 was 10 µmol·L−1 for the KIR6.1/SUR2B channel and ∼45 µmol·L−1 for KIR6.2/SURx channels. Rosiglitazone also inhibited KIR6.2ΔC36 channels in the absence of the sulphonylurea receptor (SUR) subunit, with potency (IC50= 45 µmol·L−1) almost identical to that for KIR6.2/SURx channels. Single-channel kinetic analysis showed that the channel inhibition was mediated by augmentation of the long-lasting closures without affecting the channel open state and unitary conductance. In contrast, rosiglitazone had no effect on KIR1.1, KIR2.1 and KIR4.1 channels, suggesting that the channel inhibitory effect is selective for KIR6.x channels.

CONCLUSIONS AND IMPLICATIONS

These results suggest a novel KATP channel inhibitor that acts on the pore-forming KIR6.x subunit, affecting the channel gating.

LINKED ARTICLE

This article is commented on by Dart, pp. 23–25 of this issue. To view this commentary visit http://dx.doi.org/10.1111/j.1476-5381.2012.01990.x  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号