首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
介绍了Crystal Reports功能、结构和特点,通过在VS.NET创建具体的Windows应用演示了Crystal Repots的强大功能.  相似文献   

2.
基于.NET的实时多媒体监控平台   总被引:3,自引:0,他引:3  
通过对多媒体网络通信和远程监控技术的研究,提出一种基于微软.NET框架技术的实时多媒体监控平台模型。介绍了.NET框架原理及.NET平台中的DirectShow技术、Pinvoke和COM Interop技术,具体阐述了模型的分层结构及各层的关键实现技术,并着重讨论了.NET Remoting和RTP/RTCP的原理以及在数据传输中的应用。  相似文献   

3.
微软在.NET框架的基础上推出的移动设备.NET技术,它结合了ASP.NET以及ADO.NET,是一种比较容易实现的且高效率的移动web应用程序设计技术,极大的方便了手机等移动设备对移动网络的访问,也使得人们用手机等移动设备如查询股票信息、天气信息等成为可能。本文主要介绍一个基于.NET Mobile的手机股票查询系统的具体设计与实现。文章首先对课题的相关技术如WAP(wireless Application Protocol,无线应用协议)技术、NET技术以及visual Studio.NET作了简单的介绍,然后系统的分析了系统设计的目的和要求实现的功能,以及有关手机编程所要遵循的设计原则以及采用的关键技术。  相似文献   

4.
通过对网络中心业务办理过程调查发现,我校网络中心前台业务存在着业务办理手续复杂、用户数据分散等缺点。本文给出了用于提高前台业务办理工作效率和统一数据管理系统的具体设计,包括系统结构设计、数据库设计等,以及关键技术的分析和应用。系统采用Visual Basic.NET作为前端开发工具和ACCESS2003作为后台数据库管理系统来进行实现,系统的应用提高了前台业务办理的效率,实现了数据的统一性和安全性,统计和分析数据的效率大大的提高了。  相似文献   

5.
本文对多媒体教室与机房管理系统的各部分功能进行了分析,介绍了系统的设计思想和体系结构,叙述了基于.Net平台上系统实现的具体过程,并重点阐述了系统实现过程中ASP.NET和ADO.net关键技术的应用。  相似文献   

6.
文中主要探讨基于三层分布式结构来开发数据库应用程序的具体过程和方法。首先,介绍三层分布式结构的体系结构和工作原理;然后介绍.NET Remoting远程处理框架和ADO.NET数据访问技术。最后通过一个简单分布式应用程序实例进一步阐述,说明三层分布式结构可以大大提高分布式应用程序的运行效率和安全性。  相似文献   

7.
介绍ASP.NET3.5和C#的编程环境,以存款利息计算器的具体编程过程为例,讲解了在实际工作中如何应用ASP.NET3.5和C#。  相似文献   

8.
在ASP.NET中利用正则表达式实现模式验证   总被引:1,自引:0,他引:1  
介绍了在ASP.NET中利用正则表达式实现模式验证的方法,并给出了实现的具体代码。  相似文献   

9.
本文通过对Windows窗体控件TreeView的改进,使树控件具有简单方便地加载数据的能力,从而简化了程序代码编写,提高应用系统开发的效率。同时,也为我们展示了基于.NET环境下用户自定义控件的设计和使用方法。  相似文献   

10.
使用ASP.NET在内存中建立动态数据表,实现Excel提供的数据查询向导功能.  相似文献   

11.
The Smoothed Particle Mesh Ewald method [U. Essmann, L. Perera, M.L. Berkowtz, T. Darden, H. Lee, L.G. Pedersen, J. Chem. Phys. 103 (1995) 8577] for calculating long ranged forces in molecular simulation has been adapted for the parallel molecular dynamics code DL_POLY_3 [I.T. Todorov, W. Smith, Philos. Trans. Roy. Soc. London 362 (2004) 1835], making use of a novel 3D Fast Fourier Transform (DAFT) [I.J. Bush, The Daresbury Advanced Fourier transform, Daresbury Laboratory, 1999] that perfectly matches the Domain Decomposition (DD) parallelisation strategy [W. Smith, Comput. Phys. Comm. 62 (1991) 229; M.R.S. Pinches, D. Tildesley, W. Smith, Mol. Sim. 6 (1991) 51; D. Rapaport, Comput. Phys. Comm. 62 (1991) 217] of the DL_POLY_3 code. In this article we describe software adaptations undertaken to import this functionality and provide a review of its performance.  相似文献   

12.
We applied our recently developed kinetic computational mutagenesis (KCM) approach [L.T. Chong, W.C. Swope, J.W. Pitera, V.S. Pande, Kinetic computational alanine scanning: application to p53 oligomerization, J. Mol. Biol. 357 (3) (2006) 1039–1049] along with the MM-GBSA approach [J. Srinivasan, T.E. Cheatham 3rd, P. Cieplak, P.A. Kollman, D.A. Case, Continuum solvent studies of the stability of DNA, RNA, and phosphoramidate-DNA helices, J. Am. Chem. Soc. 120 (37) (1998) 9401–9409; P.A. Kollman, I. Massova, C.M. Reyes, B. Kuhn, S. Huo, L.T. Chong, M. Lee, T. Lee, Y. Duan, W. Wang, O. Donini, P. Cieplak, J. Srinivasan, D.A. Case, T.E. Cheatham 3rd., Calculating structures and free energies of complex molecules: combining molecular mechanics and continuum models, Acc. Chem. Res. 33 (12) (2000) 889–897] to evaluate the effects of all possible missense mutations on dimerization of the oligomerization domain (residues 326–355) of tumor suppressor p53. The true positive and true negative rates for KCM are comparable (within 5%) to those of MM-GBSA, although MM-GBSA is much less computationally intensive when it is applied to a single energy-minimized configuration per mutant dimer. The potential advantage of KCM is that it can be used to directly examine the kinetic effects of mutations.  相似文献   

13.
We applied our recently developed kinetic computational mutagenesis (KCM) approach [L.T. Chong, W.C. Swope, J.W. Pitera, V.S. Pande, Kinetic computational alanine scanning: application to p53 oligomerization, J. Mol. Biol. 357 (3) (2006) 1039–1049] along with the MM-GBSA approach [J. Srinivasan, T.E. Cheatham 3rd, P. Cieplak, P.A. Kollman, D.A. Case, Continuum solvent studies of the stability of DNA, RNA, and phosphoramidate-DNA helices, J. Am. Chem. Soc. 120 (37) (1998) 9401–9409; P.A. Kollman, I. Massova, C.M. Reyes, B. Kuhn, S. Huo, L.T. Chong, M. Lee, T. Lee, Y. Duan, W. Wang, O. Donini, P. Cieplak, J. Srinivasan, D.A. Case, T.E. Cheatham 3rd., Calculating structures and free energies of complex molecules: combining molecular mechanics and continuum models, Acc. Chem. Res. 33 (12) (2000) 889–897] to evaluate the effects of all possible missense mutations on dimerization of the oligomerization domain (residues 326–355) of tumor suppressor p53. The true positive and true negative rates for KCM are comparable (within 5%) to those of MM-GBSA, although MM-GBSA is much less computationally intensive when it is applied to a single energy-minimized configuration per mutant dimer. The potential advantage of KCM is that it can be used to directly examine the kinetic effects of mutations.  相似文献   

14.
(i) Call a c.e. degree b anti-cupping relative to x, if there is a c.e. a < b such that for any c.e. w, w x implies a ∪ w b ∪ x.(ii) Call a c.e. degree b everywhere anti-cupping (e.a.c.), if it is anti-cupping relative to x for each c.e. degree x.By a tree method, we prove that every high c.e. degree has e.a.c. property by extending Harrington's anti-cupping theorem.  相似文献   

15.
The discoveries of continuations   总被引:4,自引:0,他引:4  
We give a brief account of the discoveries of continuations and related concepts by A. van Wijngaarden, A. W. Mazurkiewicz, F. L. Morris, C. P. Wadsworth, J. H. Morris, M. J. Fischer, and S. K. Abdali.  相似文献   

16.
The purpose of this study is to give a Taylor polynomial approximation for the solution of hyperbolic type partial differential equations with constant coefficients. The technique used is an improved Taylor matrix method, which has been given for solving ordinary differential, integral and integro-differential equations [M. Gülsu and M. Sezer, A method for the approximate solution of the high-order linear difference equations in terms of Taylor polynomials, Int. J. Comput. Math. 82(5) (2005), pp. 629–642; M. Gülsu and M. Sezer, On the solution of the Riccati equation by the Taylor matrix method, Appl. Math. Comput. 188 (2007), pp. 446–449; A. Karamete and M. Sezer, A Taylor collocation method for the solution of linear integro-differential equations, Int. J. Comput. Math. 79(9) (2002), pp. 987–1000; N. Kurt and M. Çevik, Polynomial solution of the single degree of freedom system by Taylor matrix method, Mech. Res. Commun. 35 (2008), pp. 530–536; N. Kurt and M. Sezer, Polynomial solution of high-order linear Fredholm integro-differential equations with constant coefficients, J. Franklin Inst. 345 (2008), pp. 839–850; ?. Nas, S. Yalçinba?, and M. Sezer, A method for approximate solution of the high-order linear Fredholm integro-differential equations, Int. J. Math. Edu. Sci. Technol. 27(6) (1996), pp. 821–834; M. Sezer, Taylor polynomial solution of Volterra integral equations, Int. J. Math. Edu. Sci. Technol. 25(5) (1994), pp. 625–633; M. Sezer, A method for approximate solution of the second order linear differential equations in terms of Taylor polynomials, Int. J. Math. Edu. Sci. Technol. 27(6) (1996), pp. 821–834; M. Sezer, M. Gülsu, and B. Tanay, A matrix method for solving high-order linear difference equations with mixed argument using hybrid Legendre and Taylor polynomials, J. Franklin Inst. 343 (2006), pp. 647–659; S. Yalçinba?, Taylor polynomial solutions of nonlinear Volterra–Fredholm integral equation, Appl. Math. Comput. 127 (2002), pp. 196–206; S. Yalçinba? and M. Sezer, The approximate solution of high-order linear Volterra–Fredholm integro-differential equations in terms of Taylor polynomials, Appl. Math. Comput. 112 (2000), pp. 291–308]. Some numerical examples, which consist of initial and boundary conditions, are given to illustrate the reliability and efficiency of the method. Also, the results obtained are compared by the known results; the error analysis is performed and the accuracy of the solution is shown.  相似文献   

17.
It is well known that there is no analytic expression for the electrical capacitance of the unit cube. However, there are several Monte Carlo methods that have been used to numerically estimate this capacitance to high accuracy. These include a Brownian dynamics algorithm [H.-X. Zhou, A. Szabo, J.F. Douglas, J.B. Hubbard, A Brownian dynamics algorithm for calculating the hydrodynamic friction and the electrostatic capacitance of an arbitrarily shaped object, J. Chem. Phys. 100 (5) (1994) 3821–3826] coupled to the “walk on spheres” (WOS) method [M.E. Müller, Some continuous Monte Carlo methods for the Dirichlet problem, Ann. Math. Stat. 27 (1956) 569–589]; the Green’s function first-passage (GFFP) algorithm [J.A. Given, J.B. Hubbard, J.F. Douglas, A first-passage algorithm for the hydrodynamic friction and diffusion-limited reaction rate of macromolecules, J. Chem. Phys. 106 (9) (1997) 3721–3771]; an error-controlling Brownian dynamics algorithm [C.-O. Hwang, M. Mascagni, Capacitance of the unit cube, J. Korean Phys. Soc. 42 (2003) L1–L4]; an extrapolation technique coupled to the WOS method [C.-O. Hwang, Extrapolation technique in the “walk on spheres” method for the capacitance of the unit cube, J. Korean Phys. Soc. 44 (2) (2004) 469–470]; the “walk on planes” (WOP) method [M.L. Mansfield, J.F. Douglas, E.J. Garboczi, Intrinsic viscosity and the electrical polarizability of arbitrarily shaped objects, Phys. Rev. E 64 (6) (2001) 061401:1–061401:16; C.-O. Hwang, M. Mascagni, Electrical capacitance of the unit cube, J. Appl. Phys. 95 (7) (2004) 3798–3802]; and the random “walk on the boundary” (WOB) method [M. Mascagni, N.A. Simonov, The random walk on the boundary method for calculating capacitance, J. Comp. Phys. 195 (2004) 465–473]. Monte Carlo methods are convenient and efficient for problems whose solution includes singularities. In the calculation of the unit cube capacitance, there are edge and corner singularities in the charge density distribution. In this paper, we review the above Monte Carlo methods for computing the electrical capacitance of a cube and compare their effectiveness. We also provide a new result. We will focus our attention particularly on two Monte Carlo methods: WOP [M.L. Mansfield, J.F. Douglas, E.J. Garboczi, Intrinsic viscosity and the electrical polarizability of arbitrarily shaped objects, Phys. Rev. E 64 (6) (2001) 061401:1–061401:16; C.-O. Hwang, M. Mascagni, Electrical capacitance of the unit cube, J. Appl. Phys. 95 (7) (2004) 3798–3802; C.-O. Hwang, T. Won, Edge charge singularity of conductors, J. Korean Phys. Soc. 45 (2004) S551–S553] and the random WOB [M. Mascagni, N.A. Simonov, The random walk on the boundary method for calculating capacitance, J. Comp. Phys. 195 (2004) 465–473] methods.  相似文献   

18.
《国际计算机数学杂志》2012,89(14):3273-3296
We introduce the new idea of recurrent functions to provide a new semilocal convergence analysis for Newton-type methods. It turns out that our sufficient convergence conditions are weaker, and the error bounds are tighter than in earlier studies in many interesting cases [X. Chen, On the convergence of Broyden-like methods for nonlinear equations with nondifferentiable terms, Ann. Inst. Statist. Math. 42 (1990), pp. 387–401; X. Chen and T. Yamamoto, Convergence domains of certain iterative methods for solving nonlinear equations, Numer. Funct. Anal. Optim. 10 (1989), pp. 37–48; Y. Chen and D. Cai, Inexact overlapped block Broyden methods for solving nonlinear equations, Appl. Math. Comput. 136 (2003), pp. 215–228; J.E. Dennis, Toward a unified convergence theory for Newton-like methods, in Nonlinear Functional Analysis and Applications, L.B. Rall, ed., Academic Press, New York, 1971, pp. 425–472; P. Deuflhard, Newton Methods for Nonlinear Problems. Affine Invariance and Adaptive Algorithms, Springer Series in Computational Mathematics, Vol. 35, Springer-Verlag, Berlin, 2004; P. Deuflhard and G. Heindl, Affine invariant convergence theorems for Newton's method and extensions to related methods, SIAM J. Numer. Anal. 16 (1979), pp. 1–10; Z. Huang, A note of Kantorovich theorem for Newton iteration, J. Comput. Appl. Math. 47 (1993), pp. 211–217; L.V. Kantorovich and G.P. Akilov, Functional Analysis, Pergamon Press, Oxford, 1982; D. Li and M. Fukushima, Globally Convergent Broyden-like Methods for Semismooth Equations and Applications to VIP, NCP and MCP, Optimization and Numerical Algebra (Nanjing, 1999), Ann. Oper. Res. 103 (2001), pp. 71–97; C. Ma, A smoothing Broyden-like method for the mixed complementarity problems, Math. Comput. Modelling 41 (2005), pp. 523–538; G.J. Miel, Unified error analysis for Newton-type methods, Numer. Math. 33 (1979), pp. 391–396; G.J. Miel, Majorizing sequences and error bounds for iterative methods, Math. Comp. 34 (1980), pp. 185–202; I. Moret, A note on Newton type iterative methods, Computing 33 (1984), pp. 65–73; F.A. Potra, Sharp error bounds for a class of Newton-like methods, Libertas Math. 5 (1985), pp. 71–84; W.C. Rheinboldt, A unified convergence theory for a class of iterative processes, SIAM J. Numer. Anal. 5 (1968), pp. 42–63; T. Yamamoto, A convergence theorem for Newton-like methods in Banach spaces, Numer. Math. 51 (1987), pp. 545–557; P.P. Zabrejko and D.F. Nguen, The majorant method in the theory of Newton–Kantorovich approximations and the Pták error estimates, Numer. Funct. Anal. Optim. 9 (1987), pp. 671–684; A.I. Zin[cbreve]enko, Some approximate methods of solving equations with non-differentiable operators, (Ukrainian), Dopovidi Akad. Nauk Ukraïn. RSR (1963), pp. 156–161]. Applications and numerical examples, involving a nonlinear integral equation of Chandrasekhar-type, and a differential equation are also provided in this study.  相似文献   

19.
Although the observations concerning the factors which influence the siRNA efficacy give clues to the mechanism of RNAi, the quantitative prediction of the siRNA efficacy is still a challenge task. In this paper, we introduced a novel non-linear regression method: random forest regression (RFR), to quantitatively estimate siRNAs efficacy values. Compared with an alternative machine learning regression algorithm, support vector machine regression (SVR) and four other score-based algorithms [A. Reynolds, D. Leake, Q. Boese, S. Scaringe, W.S. Marshall, A. Khvorova, Rational siRNA design for RNA interference, Nat. Biotechnol. 22 (2004) 326-330; K. Ui-Tei, Y. Naito, F. Takahashi, T. Haraguchi, H. Ohki-Hamazaki, A. Juni, R. Ueda, K. Saigo, Guidelines for the selection of highly effective siRNA sequences for mammalian and chick RNA interference, Nucleic Acids Res. 32 (2004) 936-948; A.C. Hsieh, R. Bo, J. Manola, F. Vazquez, O. Bare, A. Khvorova, S. Scaringe, W.R. Sellers, A library of siRNA duplexes targeting the phosphoinositide 3-kinase pathway: determinants of gene silencing for use in cell-based screens, Nucleic Acids Res. 32 (2004) 893-901; M. Amarzguioui, H. Prydz, An algorithm for selection of functional siRNA sequences, Biochem. Biophys. Res. Commun. 316 (2004) 1050-1058) our RFR model achieved the best performance of all. A web-server, RFRCDB-siRNA (http://www.bioinf.seu.edu.cn/siRNA/index.htm), has been developed. RFRCDB-siRNA consists of two modules: a siRNA-centric database and a RFR prediction system. RFRCDB-siRNA works as follows: (1) Instead of directly predicting the gene silencing activity of siRNAs, the service takes these siRNAs as queries to search against the siRNA-centric database. The matched sequences with the exceeding the user defined functionality value threshold are kept. (2) The mismatched sequences are then processed into the RFR prediction system for further analysis.  相似文献   

20.
We extend the POMWIG Monte Carlo generator developed by B. Cox and J. Forshaw, to include new models of central production through inclusive and exclusive double Pomeron exchange in proton-proton collisions. Double photon exchange processes are described as well, both in proton-proton and heavy-ion collisions. In all contexts, various models have been implemented, allowing for comparisons and uncertainty evaluation and enabling detailed experimental simulations.

Program summary

Title of the program:DPEMC, version 2.4Catalogue identifier: ADVFProgram summary URL:http://cpc.cs.qub.ac.uk/summaries/ADVFProgram obtainable from: CPC Program Library, Queen's University of Belfast, N. IrelandComputer: any computer with the FORTRAN 77 compiler under the UNIX or Linux operating systemsOperating system: UNIX; LinuxProgramming language used: FORTRAN 77High speed storage required:<25 MBNo. of lines in distributed program, including test data, etc.: 71 399No. of bytes in distributed program, including test data, etc.: 639 950Distribution format: tar.gzNature of the physical problem: Proton diffraction at hadron colliders can manifest itself in many forms, and a variety of models exist that attempt to describe it [A. Bialas, P.V. Landshoff, Phys. Lett. B 256 (1991) 540; A. Bialas, W. Szeremeta, Phys. Lett. B 296 (1992) 191; A. Bialas, R.A. Janik, Z. Phys. C 62 (1994) 487; M. Boonekamp, R. Peschanski, C. Royon, Phys. Rev. Lett. 87 (2001) 251806; Nucl. Phys. B 669 (2003) 277; R. Enberg, G. Ingelman, A. Kissavos, N. Timneanu, Phys. Rev. Lett. 89 (2002) 081801; R. Enberg, G. Ingelman, L. Motyka, Phys. Lett. B 524 (2002) 273; R. Enberg, G. Ingelman, N. Timneanu, Phys. Rev. D 67 (2003) 011301; B. Cox, J. Forshaw, Comput. Phys. Comm. 144 (2002) 104; B. Cox, J. Forshaw, B. Heinemann, Phys. Lett. B 540 (2002) 26; V. Khoze, A. Martin, M. Ryskin, Phys. Lett. B 401 (1997) 330; Eur. Phys. J. C 14 (2000) 525; Eur. Phys. J. C 19 (2001) 477; Erratum, Eur. Phys. J. C 20 (2001) 599; Eur. Phys. J. C 23 (2002) 311]. This program implements some of the more significant ones, enabling the simulation of central particle production through color singlet exchange between interacting protons or antiprotons.Method of solution: The Monte Carlo method is used to simulate all elementary 2→2 and 2→1 processes available in HERWIG. The color singlet exchanges implemented in DPEMC are implemented as functions reweighting the photon flux already present in HERWIG.Restriction on the complexity of the problem: The program relying extensively on HERWIG, the limitations are the same as in [G. Marchesini, B.R. Webber, G. Abbiendi, I.G. Knowles, M.H. Seymour, L. Stanco, Comput. Phys. Comm. 67 (1992) 465; G. Corcella, I.G. Knowles, G. Marchesini, S. Moretti, K. Odagiri, P. Richardson, M. Seymour, B. Webber, JHEP 0101 (2001) 010].Typical running time: Approximate times on a 800 MHz Pentium III: 5-20 min per 10 000 unweighted events, depending on the process under consideration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号