首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 46 毫秒
1.
采用水溶液聚合后水解法,以丙烯酰胺(AM)、(4-丙烯酰胺基)苯基十四烷基二甲基溴化铵(PTDAB)、2-丙烯酰胺基-2甲基丙磺酸(AMPS)为原料合成了疏水缔合聚合物P(AM/PTDAB/AMPS/NaAA),通过考察反应条件对合成聚合物的特性黏数、溶解性以及增黏性的影响规律确定了最佳合成条件,研究了最佳合成条件下所合成聚合物的耐温抗盐性、剪切稳定性以及热稳定性。聚合物的最佳合成条件为:PTDAB加量为总单体质量的0.5%~0.8%,AMPS加量为总单体质量的15%,总单体质量分数为25%,复合引发剂加量为总单体质量的0.1%,pH值为8,引发温度30℃。采用矿化度100 g/L的盐水配制的质量浓度2000 mg/L的合成聚合物溶液的黏度仍大于30 mPa·s;采用矿化度20 g/L的盐水配制质量浓度2000 mg/L的合成聚合物溶液在转速5000 r/min下剪切3 min再静置4 h后的黏度保留率可达80%以上;聚合物溶液在85℃高温老化150 d后的黏度大于20 mPa·s。所合成四元共聚物表现出优异的耐温抗盐性、剪切稳定性以及热稳定性,性能优于高相对分子质量抗盐聚丙烯酰胺P(AM-AMPS-NaAA)。  相似文献   

2.
提出了端基型疏水缔合水溶性聚合物的分子结构设想,合成了新型端基型疏水缔合水溶性聚合物,克服了疏水基团在分子链中无规则分布的缺点;疏水基团位于分子链的两端,受分子链弯曲屏蔽的影响作用比一般的疏水缔合水溶性聚合物的影响小,使疏水缔合作用更加明显。评价了疏水端基大小和浓度对聚合物性能的影响和聚合物溶液的盐增粘性、抗温性、抗剪切性以及溶液中聚合物与外加表面活性剂的相互作用。结果表明,在水溶性聚合物分子的两端接上了不同的疏水基团,形成端基型疏水缔合水溶性聚合物,该类聚合物结构清楚,相对分子质量确定,并具有很好的增粘性、抗温性、抗盐性和抗剪切性;当疏水端基的质量分数为1.2%时,溶液的流出时间最长,说明缔合作用最强。  相似文献   

3.
为了获得耐温抗盐性优良、在弱碱性环境中溶解性良好的疏水缔合聚合物驱油剂,以辛基酚聚氧乙烯醚(OP-10)为乳化剂,丙烯酰胺(AM)、丙烯酸(AA)和二十二烷基聚氧乙烯醚甲基丙烯酸酯(BEM)为原料合成了碱溶性三元共聚物P(AM/AA/BEM),对其合成条件进行了优化,并对其溶液性能进行了研究。结果表明,制备P(AM/AA/BEM)的最佳合成条件为:总单体质量分数20%、AA摩尔分数25%、BEM摩尔分数0.2%、引发剂偶氮二异丁基脒盐酸盐(V50)质量分数0.3%、反应温度45℃、反应时间8 h;P(AM/AA/BEM)增黏性较好,耐温达90℃,抗盐达20 g/L,剪切稀释性良好;P(AM/AA/BEM)与表面活性剂十二烷基苯磺酸钠(SDBS)具有较强的相互作用,在1 g/L P(AM/AA/BEM)中加入400 mg/L SDBS,可使聚合物/表面活性剂体系的黏度增大3.3倍。P(AM/AA/BEM)在增黏、耐温、抗盐和剪切稀释性方面均好于部分水解聚丙烯酰胺(HPAM)。  相似文献   

4.
目的 疏水缔合聚合物的溶解性制约了在油气开采领域的应用。为了满足油气开采的需要和实现低成本化,研制了疏水缔合聚合物APO,并通过主客体包合技术实现聚合物的增溶改性。方法 通过对聚合物结构的设计,提升聚合物的性能,以丙烯酰胺(AM)、2-丙烯酰胺基-2-甲基丙磺酸(AMPS)和疏水单体十八烷基聚氧乙烯甲基丙烯酸酯(OEMA)为原料,采用自由基水溶液聚合的方法,合成了疏水缔合聚合物APO,再利用β-环糊精独特的空腔结构进行主客体包合作用来提高其溶解性能。结果 25℃下,β-环糊精与聚合物APO的物质的量比为2∶1时,溶解时间由85 min缩短至45 min,聚合物APO在一价及二价盐水中粒径分别降低19.59%和11.50%。结论 该聚合物具有好的耐盐性能,β-环糊精能促进聚合物APO的溶解性,减少聚合物用量,实现油气开采的低成本化。  相似文献   

5.
钟传蓉  黄荣华  刘强  代华 《石油化工》2003,32(12):1037-1041
实验室自制了疏水单体苯乙烯衍生物,合成了丙烯酰胺/苯乙烯衍生物(STD)/2-甲基-2-丙烯酰胺基丙磺酸钠疏水缔合水溶性共聚物(PASA)。研究了该共聚物的溶液性能,包括疏水缔合效应、共聚物中阴离子单体加入量的影响、抗盐性、抗剪切性、温度效应、溶液热稳定性、共聚物与表面活性剂的相互作用等。实验表明,引入STD使共聚物具有较强的疏水缔合效应和优良的增粘能力,溶液质量浓度为0 1g/dl时,表观粘度达208 5mPa·s。0 1g/dl的共聚物溶液于70℃下放置120d,表观粘度为105mPa·s,具有优良的热稳定性。表面活性剂对共聚物溶液表观粘度的影响显著,加入0 8mmol/L十二烷基苯磺酸钠时,0 1g/dl的PASA溶液的表观粘度高达2178mPa·s。  相似文献   

6.
用胶束共聚法室内合成了PAHY系列疏水缔合水溶性聚合物。通过优选法,选定PAHY-2进行性能评价实验。结果表明,该疏水缔合物在水溶液中的抗温、耐盐和抗剪切性都好于传统的水溶性聚合物。  相似文献   

7.
疏水缔合聚合物及共混聚合物水溶液性能研究   总被引:6,自引:0,他引:6  
制备了一类以烷基(C12-C16)烯丙基卤化胺为疏水单体的阳离子型丙烯酰胺疏水缔合聚合物及与阴离子表面活性剂(SDS)共混的共混聚合物。比较了这类疏水缔合聚合物及共混聚合物、聚丙烯酰胺3种聚合物分别用于油田三次采油时的增粘性、抗温抗盐性能、粘附性、对石英砂的吸附情况和聚合物溶液的老化稳定性。这类水溶液疏水缔合聚合物及共混聚合物的增粘效果与超高相对分子质量聚丙烯酰胺相比有很大提高,但随着水的矿化度增加,溶液的粘度下降很快。研究认为这类疏水缔合聚合物及共混聚合物经改进后有希望作为油田三次采油的新型驱油剂。  相似文献   

8.
采用胶束氧化还原聚合方法合成了AM/C10AM/AMPS三元疏水缔合共聚物。简介了合成过程,给出了主要的合成参数。保持其他合成条件不变,分别改变疏水单体N 癸基丙烯酰胺C10AM和阴离子单体2 丙烯胺基 2 甲基丙磺酸AMPS在单体总量中的摩尔百分数(0~1.5%和15%~40%),得到了16个共聚物,在45℃、3.67和7.34s-1下测定了用矿化度4000mg/L的模拟大庆盐水配制的1000mg/L共聚物溶液的粘度,讨论了引起粘度变化的原因。有7个样品的粘度能满足大庆油田聚合物驱油的要求(7.34s-1下的粘度大于40mPa·s),其中由1.2%C10AM、35%AMPS及AM合成的共聚物样品粘度最高(61.5mPa·s)。对共聚温度等合成条件的影响作了一般性的讨论。表1参6。  相似文献   

9.
研究了疏水缔合聚合物GRF-1加量、放置时间、溶液pH值、温度、盐加量、表面活性剂、过氧化物对聚合物水溶液黏度的影响。结果表明,随着GRF-1浓度的增大,水溶液黏度增加;并随着水溶液静置时间的延长,溶液黏度逐渐上升,静置4 h后的黏度基本稳定。在30℃下静置4 h,pH=7.50时的GRF-1水溶液的黏度最大。温度升高,溶液黏度逐渐降低。二价无机盐对溶液黏度的影响显著大于一价盐。阳离子、非离子和两性表面活性剂使水溶液黏度迅速降低,而阴离子表面活性剂可提高溶液黏度,阴离子表面活性剂加量为0.35%时的溶液黏度值最大,为310 mPa.s。过硫酸铵(APS)可显著降低水溶液黏度。剪切60 min时,聚合物溶液中加入0、0.01%APS后的黏度分别为50、10 mPa.s,降低80%。GRF-1水溶液具有明显的剪切变稀性,但剪切后的溶液黏度恢复率为94.7%。图7参10  相似文献   

10.
采用自由基胶束聚合法,在无交联剂存在下,引入自制含辣素衍生结构功能单体N-(4-羟基-3-甲氧基-苄基)-丙烯酰胺(HMBA),合成了一种新型的丙烯酰胺-丙烯酸-HMBA-丙烯酸十八酯四元疏水缔合共聚物(AMAHSA)。讨论了AMAHSA的合成条件,研究了温度和外加盐对其溶液性能的影响,并与不含HMBA的聚丙烯酰胺-丙烯酸-丙烯酸十八酯三元疏水缔合共聚物(AMASA)进行对比。结果表明,以单体质量含量20%,引发剂质量含量0.3%,疏水单体含量0.9 mol%制备的AMAHSA在2.5%的NaCl溶液中的粘度为蒸馏水中的54.7%,略低于AMASA的62.1%,在1.0%的CaCl_2中的粘度为蒸馏水中的38.8%,高于AMASA的30.3%,在80℃下的粘度为20℃下的45.3%,远高于AMASA的25.1%。  相似文献   

11.
采用水溶液聚合法,以丙烯酰胺(AM)、丙烯酸(AA)为单体,甲基丙烯酰氧乙基二甲基十六烷基溴化铵(C_(16)DM)为疏水单体合成了一种两性离子聚合物。通过单因素实验确定了聚合反应的较佳条件是:单体总质量分数25%、体系pH值8、n(AM):n(AA):n(C_(16)DM)=77.7:21:1.3、引发剂(n(APS):n(SS)=1.2:1)用量为0.2%、反应温度60℃、反应时间5h。实验表明:聚合物溶液的临界缔合浓度是2g/L;1.0%聚合物溶液黏度在90℃时为62 mPa·s,黏度保留率为64.6%;0.8%聚合物溶液在NaCl浓度为0.6 mol/L时黏度为40 mPa·s,黏度保留率为47.6%;在1 70 s~(-1)的剪切速率下,经过1200 s的剪切后,0.8%的聚合物溶液的黏度稳定在70 mPa·s,黏度保留率为82.3%。  相似文献   

12.
以2-丙烯酰胺基-2-甲基丙磺酸和丙烯酰胺等单体合成了适用于中原油田高温高盐地层的聚合物驱油剂.评价表明,聚合物具有良好的抗温、抗盐性能,在110℃、总矿化度为2.2×105mg/L(其中Ca2+、Mg2+总量为5 000 mg/L)的条件下,保持了良好的化学稳定性,经90d的热稳定性试验,3000mg/L聚合物溶液黏度达到9.2 mPa·s.  相似文献   

13.
以丙烯酰胺(AM)、二甲基二烯丙基氯化铵(DMDAAC)疏水单体乙酸乙烯酯(VAM)为原料,在过硫酸钾-亚硫酸氢钠引发剂存在下,通过水溶液自由基胶束共聚合法合成了新型疏水缔合阳离子型水溶性高分子絮凝剂P(AM-DMDAAC-VAM)。通过单因素实验考察了各因素对聚合物特性黏数的影响,结果表明:在单体总质量分数为30%,反应温度70℃,引发剂用量1.2%(占单体总质量分数),pH值7,反应时间8h的条件下,共聚物特性黏数达到1.263L/g,产物结构经过红外光谱进行了确证。  相似文献   

14.
以SRFG-1增稠剂和SRFC-1交联剂工业品为研究对象,采用红外光谱法(IR)和核磁共振法(1 H NMR)表征了SRFG-1增稠剂分子结构;评价了SRFG压裂液体系的耐温耐剪切性能、静态悬砂性能和破胶性能;测定了破胶液的表面张力及残渣含量。结果表明:SRFG压裂液在90℃和120℃条件下具有良好的流变性能;24h和48h内的沉降速率分别为1.2×10-4 mm/s和3.7×10-4 mm/s;在60℃,破胶剂加入量为0.04%条件下,2h即可破胶,破胶液黏度为4.87mPa·s,破胶液表面张力为27.28mN/m,破胶液残渣为46mg/L;在80℃,破胶剂加入量为0.01%条件下,1h即可破胶,破胶液黏度为3.84mPa·s,破胶液表面张力为26.5m N/m,破胶液残渣为60.3mg/L。最后将SRFG压裂液成功应用于青海民和盆地红6井和红7井,最高砂比为25%。  相似文献   

15.
分别了研究了疏水缔合聚合物AP-P4不同相对分子质量时的油水界面张力、界面膜扩张模量、油水分配系数等界面性质,并利用双偏振光干涉技术研究了低相对分子质量AP-P4在不同原油组分油水界面的吸附行为,同时与HPAM进行了对比。实验发现:和HPAM不同,AP-P4能够降低油水界面张力,具有较强的乳化能力,同时能吸附在油水界面活性物质(沥青质和胶质)的表面,增强油水界面的扩张模量,从而增强聚驱采出液的稳定性。  相似文献   

16.
以正辛基苯为起始原料,通过傅克酰化、负氢转移还原、醇脱水成烯三步反应制备正辛基苯乙烯活性疏水单体。对正辛基苯乙酮反应条件是:无水三氯化铝/乙酸酐/正辛基苯(摩尔比)=3∶2∶1,25℃反应5h,起始反应时,反应物在0℃溶于二氯甲烷。对正辛基苯甲醇反应条件是:对正辛基苯乙酮/硼氢化钠(摩尔比)=1∶3,60℃反应2h,起始反应单体在0℃溶于甲醇。对正辛基苯乙烯反应条件是:1-甲基对正辛基苯甲醇/对甲基苯磺酸一水合物(摩尔比)=1∶2,逐渐加热至160℃,起始反应单体溶于甲苯。  相似文献   

17.
以淀粉和疏水型单体为原料 ,过硫酸钾 -硫酸亚铁为引发剂 ,采用溶液聚合法合成了疏水型水膨体。研究了单体组成、单体浓度、引发剂用量、交联剂用量、反应温度等因素对产物性能的影响。对比分析了疏水型水膨体的膨胀倍数、膨胀速率和凝胶强度。疏水型水膨体的凝胶强度大于常规水膨体 ,膨胀时间长 ,抗盐性好。  相似文献   

18.
吸水树脂作为调剖剂,在地层中吸水膨胀,封堵大孔道,起到调整吸水剖面,提高采油效率的目的。采用水溶液聚合法,以丙烯酸(AA)和丙烯酰胺(AM)为聚合单体,聚乙二醇双丙烯酰胺为交联剂合成高强度吸水树脂。讨论了交联剂的用量、单体浓度为、单体比例、引发剂用量和聚合反应温度对吸水树脂性能的影响。吸水树脂吸盐水后强度最高的反应条件为:聚乙二醇(PEG)的相对分子质量为400,交联剂用量为4%,单体浓度为40%,n(AM)∶n(AA)=2.5,引发剂用量为0.04%,n(氧化剂)∶n(还原剂)=1,聚合温度为30~35℃。最优化条件下吸盐水率可达86g/g。  相似文献   

19.
一种氢键组装型侧链液晶高分子的合成与表征   总被引:2,自引:0,他引:2  
以异烟酸、对硝基苯酚为原料先合成了一种液晶基元异烟酸对硝基苯酚酯,然后以聚乙烯醇(PVA)分子的羟基氢为电子受体,异烟酸对硝基苯酚酯分子中的氮原子为电子供体,通过氢键自组装制备了氢键组装PVA侧链液晶高分子。用IR和~1H NMR对介晶基元异烟酸对硝基苯酚酯和氢键组装PVA侧链液晶高分子的结构进行了表征,用DSC和热台偏光显微镜(POM)对它们的液晶行为进行了分析。结果表明,所合成的异烟酸对硝基苯酚酯和氢键组装PVA侧链液晶高分子均显示出热致液晶性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号