首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Land disturbance and land restoration are important factors influencing runoff production and sediment yield in the semi-arid loess regions of China. This study compared the runoff production and sediment yield during the early stage after land disturbance(ESLD) with those during restoring stage after land disturbance(RSLD). Grey relational analysis was used to analyse the importance of each one of the influencing factors(vegetation, rainfall, soil and topography) in affecting the runoff production and sediment yield. Our results showed that during ESLD, topography was the most critical factor controlling the runoff production, while soil was the most important factor controlling the sediment yield. During RSLD, vegetation was more important in affecting runoff production, while rainfall was more important in affecting sediment yield. In additional, this study demonstrated that both the runoff production and the sediment yield can be effectively reduced by restoring vegetation on severely-disturbed lands, thus providing an important theoretical basis for better implementations of the Grain for Green Program. Our results revealed that the vegetation types of Hippophae rhamnoides+Pinus tabulaeformis and H. rhamnoides are better plant selections for land restoration in this area, especially for relatively gentle slopes(i.e., less than 20 degrees).  相似文献   

2.
植被对小流域汇流及侵蚀产沙影响研究   总被引:6,自引:0,他引:6  
本文从物理概念出发对小流域产汇流及侵蚀产沙过程进行研究,并结合实例分析了流域内森林植被对产汇流和侵蚀产沙的影响。森林植被的调节径流、防治侵蚀的功能体现在各个层面,林冠及下部枯落层可削减雨滴动能;树干及下部枯落层可削减地表径流流速;林地可改善土壤的渗透性,减少地表径流流量;根系可固持土壤,增加抗蚀力。  相似文献   

3.
雨强和植被覆盖度对典型坡面产流产沙的影响   总被引:4,自引:0,他引:4  
应用先进的UGT水蚀测量仪,研究黄土高原祖厉河流域雨强和植被覆盖度对典型坡面产流产沙的影响。结果表明:黄土高原半干旱区间隔为15min的产流量、径流含沙量和产沙量与15min雨强具有相同的增减趋势,呈三次曲线关系y=b0+b1x+b2x2+b3x3。7种雨强条件下,人类扰动撂荒地的产流量、径流含沙量和产沙量均明显大于植被自然恢复的撂荒地,覆盖度20%的撂荒地是覆盖度35%撂荒地的平均径流系数的2.35倍,径流含沙量的4.48倍,产沙量的14.06倍。相对于受到扰动的撂荒地,植被自然恢复的撂荒地水土保持效益显著。  相似文献   

4.
SU Yuanyi 《干旱区科学》2020,12(6):937-949
Seasonal freeze-thaw processes have led to severe soil erosion in the middle and high latitudes. The area affected by freeze-thaw erosion in China exceeds 13% of the national territory. So understanding the effect of freeze-thaw on erosion process is of great significance for soil and water conservation as well as for ecological engineering. In this study, we designed simulated rainfall experiments to investigate soil erosion processes under two soil conditions, unfrozen slope (UFS) and frozen slope (FS), and three rainfall intensities of 0.6, 0.9 and 1.2 mm/min. The results showed that the initial runoff time of FS occurred much earlier than that of the UFS. Under the same rainfall intensity, the runoff of FS is 1.17-1.26 times that of UFS; and the sediment yield of FS is 6.48-10.49 times that of UFS. With increasing rainfall time, rills were produced on the slope. After the appearance of the rills, the sediment yield on the FS accounts for 74%-86% of the total sediment yield. Rill erosion was the main reason for the increase in soil erosion rate on FS, and the reduction in water percolation resulting from frozen layers was one of the important factors leading to the advancement of rills on slope. A linear relationship existed between the cumulative runoff and the sediment yield of UFS and FS (R2>0.97, P<0.01). The average mean weight diameter (MWD) on the slope erosion particles was as follows: UFS0.9 (73.84 μm)>FS0.6 (72.30 μm)>UFS1.2 (72.23 μm)>substrate (71.23 μm)>FS1.2 (71.06 μm)>FS0.9 (70.72 μm). During the early stage of the rainfall, the MWD of the FS was relatively large. However, during the middle to late rainfall, the particle composition gradually approached that of the soil substrate. Under different rainfall intensities, the mean soil erodibility (MK) of the FS was 7.22 times that of the UFS. The ratio of the mean regression coefficient C2 (MC2) between FS and UFS was roughly correspondent with MK. Therefore, the parameter C2 can be used to evaluate soil erodibility after the appearance of the rills. This article explored the influence mechanism of freeze-thaw effects on loess soil erosion and provided a theoretical basis for further studies on soil erosion in the loess hilly regions.  相似文献   

5.
为研究石坎反坡水平阶对于薄土坡耕地的水沙调控效果,设置了两个标准天然降雨径流小区(措施小区和对照小区)分别对次降雨径流和泥沙进行了观测,结果表明:石坎反坡水平阶措施能够有效地调控坡耕地地表径流,年均径流削减率为22.5%,且在短历时、大雨强降雨条件下的调控效果好于长历时、小雨强降雨;该措施对于坡耕地泥沙调控效果显著且稳定,年均泥沙削减率95.5%,措施小区的坡面产沙量随降雨特征值变化的波动幅度远远小于对照小区;石坎反坡水平阶措施通过减少坡面侵蚀,间接提高了坡耕地作物产量,春玉米年均增产6.2%。  相似文献   

6.
As an important parameter in the soil erosion model, soil surface roughness(SSR) is used to quantitatively describe the micro-relief on agricultural land. SSR has been extensively studied both experimentally and theoretically; however, no studies have focused on understanding SSR on the Loess Plateau of China. This study investigated changes in SSR for three different tillage practices on the Loess Plateau of China and the effects of SSR on runoff and erosion yield during simulated rainfall. The tillage practices used were zero tillage(ZT), shallow hoeing(SH) and contour ploughing(CP). Two rainfall intensities were applied, and three stages of water erosion processes(splash erosion(I), sheet erosion(II) and rill erosion(III)) were analyzed for each rainfall intensity. The chain method was used to measure changes in SSR both initially and after each stage of rainfall. A splash board was used to measure the splash erosion at stage I. Runoff and sediment data were collected continuously at 2-min intervals during rainfall erosion stages II and III. We found that SSR of the tilled surfaces ranged from 1.0% to 21.9% under the three tillage practices, and the order of the initial SSR for the three treatments was ZT〈SH〈CP. For the ZT treatment, SSR increased slightly from stage I to III, whereas for the SH and CP treatments, SSR decreased by 44.5% and 61.5% after the three water erosion stages, respectively, and the greatest reduction in SSR occurred in stage I. Regression analysis showed that the changes in SSR with increasing cumulative rainfall could be described by a power function(R2〉0.49) for the ZT, SH and CP treatments. The runoff initiation time was longer in the SH and CP treatments than in the ZT treatment. There were no significant differences in the total runoff yields among the ZT, SH and CP treatments. Sediment loss was significantly smaller(P〈0.05) in the SH and CP treatments than in the ZT treatment.  相似文献   

7.
利用人工模拟降雨试验,研究不同降雨强度下,不同农业耕作措施坡地水土流失特征。试验设计的坡地坡度分别为5°和15°,降雨强度分别为60、90、120 mm·h-1;耕作措施分别为等高耕作、人工掏挖和人工锄耕,以相同坡度的平整坡地作为对照。结果表明:(1)随着降雨强度的增大,各耕作措施坡地产流量显著增大1.51倍以上,最大增加幅度为等高耕作坡地的2.28倍。而坡地产沙量在降雨强度较小时增加不显著,当降雨强度增大到120 mm·h-1时,坡地产沙量显著增大;(2)与平整坡地相比,等高耕作在3个降雨强度下都具有明显的减流效益,减流量均大于15%,而人工锄耕和人工掏挖却不明显;(3)在5°坡地上,等高耕作和人工掏挖在3个降雨强度的减沙效益均大于25%,而人工锄耕减沙效益不明显;在坡度为15°、降雨强度为60 mm·h-1和90 mm·h-1时,人工锄耕和人工掏挖减沙效益与降雨强度关系无明显规律,在降雨强度为120 mm·h-1时,3个耕作措施都不能有效降低坡地产沙量。可见,水土保持农业耕作措施具有降低坡地产流量的作用,而对于坡地产沙的作用存在明显差异,在大坡度和大降雨强度下,不仅不能降低坡地产沙,反而加剧坡地土壤流失。  相似文献   

8.
天山中部不同林分对产流产沙影响的灰色关联分析   总被引:2,自引:0,他引:2  
以天山中部林区代表14个不同林分条件的径流小区为研究对象,运用灰色关联分析法,对影响产流产沙的因子进行对比分析。结果表明:产流产沙的因子影响程度存在差异性。对于产沙量来说,降雨量>林分密度>冠层活枝高度>枯落物厚度>郁闭度>坡度;对于产流量来说,降雨量>枯落物厚度>郁闭度>林分密度>冠层活枝高度>坡度。而不同林分条件对产流产沙影响差异中,天然林呈现:中龄林3>近熟林>中龄林4>成熟林>幼龄林>中龄林2>中龄林1;人工林为:混交林>透光伐抚育林>修枝抚育林>未抚育林;灌木为:盖度0.6>盖度0.8。  相似文献   

9.
Conventional tillage practices used on the Loess Plateau lead to different soil surface micro-topography which results in forming two types of soil crusts. The objective of this study was to explore the formation position, properties and erosion characteristics of structural crusts and depositional crusts under the influences of the microtopography in the rainfall experiments. Two simulated rainstorms were applied in the experiments. The first rainfall event was used for soil crust formation, then the following simulated rainfall storms at 40 mm h?1, 60 mm h?1, and 80 mm h?1 rates were applied to the soil boxes set to a 17.6% (10°) slope under three tillage types (contour tillage, artificial digging, and straight slope conditions) to investigate the resulting runoff discharge rate and sediment yield on crusted soil surface. Results show that: (1) structural crusts formed on the mounds, and depositional crusts formed in the depressions after the first rainfall events; structural crusts exhibit a lower thickness, bulk density, higher porosity and shear strength than depositional crusts; (2) structural crusts increased the runoff yield less and decreased the sediment yield more than depositional crusts; and (3) the runoff yield was significantly greater, and the sediment yield was lower on the crusted soil surface than that on the uncrusted soil surface, regardless of the effect of the tillage treatments.  相似文献   

10.
生物措施控制坡地土壤侵蚀的原因及效用分析   总被引:7,自引:0,他引:7  
本文通过对张家口地区生物措施在减弱和控制土壤侵蚀中的原因及效应分析,结果表明林冠有极效截流降雨,枯枝落叶可有效拦蓄地表径流,植物根系可固结土壤,减少小剂刷,综合作用显著,很值得在当地的坡地治理中推广应用。  相似文献   

11.
Wind and water erosion are among the most important causes of soil loss, and understanding their interactions is important for estimating soil quality and environmental impacts in regions where both types of erosion occur. We used a wind tunnel and simulated rainfall to study sediment yield, particle-size distribution and the fractal dimension of the sediment particles under wind and water erosion. The experiment was conducted with wind erosion firstly and water erosion thereafter, under three wind speeds(0, 11 and 14 m/s) and three rainfall intensities(60, 80 and 100 mm/h). The results showed that the sediment yield was positively correlated with wind speed and rainfall intensity(P<0.01). Wind erosion exacerbated water erosion and increased sediment yield by 7.25%–38.97% relative to the absence of wind erosion. Wind erosion changed the sediment particle distribution by influencing the micro-topography of the sloping land surface. The clay, silt and sand contents of eroded sediment were also positively correlated with wind speed and rainfall intensity(P<0.01). Wind erosion increased clay and silt contents by 0.35%–19.60% and 5.80%–21.10%, respectively, and decreased sand content by 2.40%–8.33%, relative to the absence of wind erosion. The effect of wind erosion on sediment particles became weaker with increasing rainfall intensities, which was consistent with the variation in sediment yield. However, particle-size distribution was not closely correlated with sediment yield(P>0.05). The fractal dimension of the sediment particles was significantly different under different intensities of water erosion(P<0.05), but no significant difference was found under wind and water erosion. The findings reported in this study implicated that both water and wind erosion should be controlled to reduce their intensifying effects, and the controlling of wind erosion could significantly reduce water erosion in this wind-water erosion crisscross region.  相似文献   

12.

Changes produced in runoff and sediment levels before and after fire and during the revegetation process were examined using a rainfall simulator. The area was burned in an experimental fire, reaching temperatures from 35° to 563° C. Then it was revegetated using different species combinations. Fifteen permanent plots were established in the burnt area (4 treatments and a control replicated three times). Simulated rainfall of 15 mm per 5 min was applied in each treatment. No significant differences were found in sediment yield and runoff between treatments, but greatest runoff was observed to occur immediately after the fire. A significant relationship was found between runoff and woody cover, and a decrease in runoff can be observed as cover increases. The relationship between sediment yields and runoff rates was also positive. The low rates observed during rainfall simulation are due to the effect of natural vegetation rather than revegetation treatments. The high organic matter content also had an influence on the low rates of runoff and sediment.  相似文献   

13.
The rapid desertification of grasslands in Inner Mongolia of China poses a significant ecological threaten to northern China. The combined effects of anthropogenic disturbances(e.g., overgrazing) and biophysical processes(e.g., soil erosion) have led to vegetation degradation and the consequent acceleration of regional desertification. Thus, mitigating the accelerated wind erosion, a cause and effect of grassland desertification, is critical for the sustainable management of grasslands. Here, a combination of mobile wind tunnel experiments and wind erosion model was used to explore the effects of different levels of vegetation coverage, soil moisture and wind speed on wind erosion at different positions of a slope inside an enclosed desert steppe in the Xilamuren grassland of Inner Mongolia. The results indicated a significant spatial difference in wind erosion intensities depending on the vegetation coverage, with a strong decreasing trend from the top to the base of the slope. Increasing vegetation coverage resulted in a rapid decrease in wind erosion as explained by a power function correlation. Vegetation coverage was found to be a dominant control on wind erosion by increasing the surface roughness and by lowering the threshold wind velocity for erosion. The critical vegetation coverage required for effectively controlling wind erosion was found to be higher than 60%. Further, the wind erosion rates were negatively correlated with surface soil moisture and the mass flux in aeolian sand transport increased with increasing wind speed. We developed a mathematical model of wind erosion based on the results of an orthogonal array design. The results from the model simulation indicated that the standardized regression coefficients of the main effects of the three factors(vegetation coverage, soil moisture and wind speed) on the mass flux in aeolian sand transport were in the following order: wind speedvegetation coveragesoil moisture. These three factors had different levels of interactive effects on the mass flux in aeolian sand transport. Our results will improve the understanding of the interactive effects of wind speed, vegetation coverage and soil moisture in controlling wind erosion in desert steppes, and will be helpful for the design of desertification control programs in future.  相似文献   

14.
坡耕地是保障粮食安全与经济发展的重要资源.本文利用承德市南山径流场资料对不同坡长下径流深、含沙量及侵蚀量进行对比分析,结果显示:坡长和降雨强度都对土壤侵蚀有影响,随着坡长变化,导致土壤侵蚀量变化的两个主导因素不断变换.雨强小于0.25 mm/min时,坡面土壤侵蚀模数随坡长的增加而增大;雨强大于0.25mm/min时,随坡长的增加先增大后减小,最大侵蚀量总是出现在22 m坡长范围内.径流深均值与侵蚀量增量随坡长变化趋势一致,含沙量均值变化与雨强关系密切.所以治理京津水源区坡耕地水土流失,应在22 m坡长以内采取等高植物篱等措施,既可降低工程投入,又减少坡面土壤流失,提高土地生产力.  相似文献   

15.
通过野外模拟降雨试验,研究了施用SP对黄土坡面产流、产沙的影响,并对实验数据进行数学模拟,建立了SP施用量与产流、产沙强度间的关系模型.结果表明:SP施用量与产流时间、平均产流强度呈二次函数相关关系,与产沙强度呈线性负相关关系.SP用量在0~2.42 g/m\+2之间时,能够延缓坡面产流,用量为1.21 g/m\+2时延缓产流效果最明显;用量介于0~3.31 g/m2之间时,能够增加土壤入渗,减少坡面产流量,用量1.65 g/m2的增渗减流效果最佳;施用SP后,能够减少坡面输沙强度,且用量越大,减沙效果越明显.SP可影响坡面产流过程,用量1.8 g/m2时,能够减小产流初期径流强度增幅,用量为3.6 g/m2时,其产流过程线与对照极接近,而施用量增加到5.4 g/m2时,产流强度明显增大.SP对坡面产沙过程的影响表现为:随施用量增大,产沙强度峰值呈逐步减小的变化趋势.  相似文献   

16.
黄河中游小流域侵蚀产沙机理研究   总被引:3,自引:1,他引:3  
本文研究的典型流域指基本上具有单一的下垫面物质组成的流域。本文选取黄河中游河段上的支流;皇甫川、窟野河、无定河上一些小流域作为典型流域进行分析研究。根据下垫面差异,将产沙区分为黄土区、基岩区、风沙区;通过各产沙因子对侵蚀产沙影响作用的分析,对三种产沙区进行定性到定量分析,全面研究了黄河中游产沙机理,并进一步提出了治理对策。  相似文献   

17.
石匣小区氮磷坡面流失特征研究   总被引:7,自引:0,他引:7  
以石匣试验小区为研究对象,分析了小区特征对氮磷、泥沙流失的影响。结果表明:在不同的土地利用方式中果园产生的径流中氮磷浓度最高,林地最低,而氮磷的流失量标准小区最高,林地最低;免耕种植、梯田种植、鱼鳞坑造林等耕作方式会明显减少农田土壤的侵蚀及氮磷的流失,植被覆盖明显减少径流量和泥沙量,从而有效地控制农田氮磷污染物的流失;在其它条件相同的情况下,坡度小的小区氮磷流失量明显减小;降雨量与氮磷的流失量呈现明显的正相关;雨季径流中氮、磷主要以颗粒态存在,径流中的泥沙量与径流量有较好的线性关系(R=0.72)。  相似文献   

18.
Soil erosion on farmland is a critical environmental issue and the main source of sediment in the Yellow River, China. Thus, great efforts have been made to reduce runoff and soil loss by restoring vegetation on abandoned farmland. However, few studies have investigated runoff and soil loss from sloping farmland during crop growth season. The objective of this study was to investigate the effects of soil management on runoff and soil loss on sloping farmland during crop growth season. We tested different soybean growth stages (i.e., seedling stage (R1), initial blossoming stage (R2), full flowering stage (R3), pod bearing stage (R4), and initial filling stage (R5)) and soil management practice (one plot applied hoeing tillage (HT) before each rainfall event, whereas the other received no treatment (NH)) by applying simulated rainfall at an intensity of 80 mm/h. Results showed that runoff and soil loss both decreased and infiltration amount increased in successive soybean growth stages under both treatments. Compared with NH plot, there was less runoff and higher infiltration amount from HT plot. However, soil loss from HT plot was larger than that from NH plot in R1-R3, but lower in R4 and R5. In the early growth stages, hoeing tillage was effective for reducing runoff and enhancing rainfall infiltration. By contrast, hoeing tillage enhanced soil and water conservation during the late growth stages. The total soil loss from HT plot (509.0 g/m2) was 11.1% higher than that from NH plot (457.9 g/m2) in R1-R5. However, the infiltration amount from HT plot (313.9 mm) was 18.4% higher than that from NH plot (265.0 mm) and the total runoff volume from HT plot was 49.7% less than that from NH plot. These results indicated that crop vegetation can also act as a type of vegetation cover and play an important role on sloping farmland. Thus, adopting rational soil management in crop planting on sloping farmland can effectively reduce runoff and soil loss, as well as maximize rainwater infiltration during crop growth period.  相似文献   

19.
Tian WANG 《干旱区科学》2017,9(2):234-243
The freeze-thaw(FT) processes affect an area of 46.3% in China. It is essential for soil and water conservation and ecological construction to elucidate the mechanisms of the FT processes and its associated soil erosion processes. In this research, we designed the control simulation experiments to promote the understanding of FT-water combined erosion processes. The results showed that the runoff of freeze-thaw slope(FTS) decreased by 8% compared to the control slope(CS), and the total sediment yield of the FTS was 1.10 times that of the CS. The sediment yield rate from the FTS was significantly greater than that from the CS after 9 min of runoff(P0.01). Both in FTS and CS treatments, the relationships between cumulative runoff and sediment yield can be fitted well with power functions(R20.98, P0.01). Significant differences in the mean weight diameter(MWD) values of particles were observed for washed particles and splashed particles between the CS and the FTS treatments in the erosion process(P0.05). The mean MWD values under CS were smaller than those under FTS for both washed and splashed particles. The ratio of the absolute value of a regression coefficient between the CS and the FTS was 1.15, being roughly correspondent with the ratio of K between the two treatments. Therefore, the parameter a of the power function between cumulative runoff and sediment yield could be an acceptable indicator for expressing the soil erodibility. In conclusion, the FTS exhibited an increase in soil erosion compared to the CS.  相似文献   

20.
Aeolian-fluvial interplay erosion regions are subject to intense soil erosion and are of particular concern in loess areas of northwestern China.Understanding the composition,distribution,and transport processes of eroded sediments in these regions is of considerable scientific significance for controlling soil erosion.In this study,based on laboratory rainfall simulation experiments,we analyzed rainfall-induced erosion processes on sand-covered loess slopes(SS)with different sand cover patterns(including length and thickness)and uncovered loess slopes(LS)to investigate the influences of sand cover on erosion processes of loess slopes in case regions of aeolian-fluvial erosion.The grain-size curves of eroded sediments were fitted using the Weibull function.Compositions of eroded sediments under different sand cover patterns and rainfall intensities were analyzed to explore sediment transport modes of SS.The influences of sand cover amount and pattern on erosion processes of loess slopes were also discussed.The results show that sand cover on loess slopes influences the proportion of loess erosion and that the compositions of eroded sediments vary between SS and LS.Sand cover on loess slopes transforms silt erosion into sand erosion by reducing splash erosion and changing the rainfall-induced erosion processes.The percentage of eroded sand from SS in the early stage of runoff and sediment generation is always higher than that in the late stage.Sand cover on loess slopes aggravates loess erosion,not only by adding sand as additional eroded sediments but also by increasing the amount of eroded loess,compared with the loess slopes without sand cover.The influence of sand cover pattern on runoff yield and the amount of eroded sediments is larger than that of sand cover amount.Furthermore,given the same sand cover pattern,a thicker sand cover could increase sand erosion while a thinner sand cover could aggravate loess erosion.This difference explains the existence of intense erosion on slopes that are thinly covered with sand in regions where aeolian erosion and fluvial erosion interact.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号