首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
不同种类的煤元素组成上存在着一定的差异,在煤气化过程中,煤灰组分通常存在显著差异。选择3种中国煤,并通过一定比例混合制备三元混合调节煤,通过热重分析实验研究了煤组分对高温煤气化反应的影响。结果表明,灰分化学组分会随着原料煤的矿物组成改变而改变,气化反应活性也会受到相应的影响。本文制备的几种煤的气化反应活性的顺序为煤炭1号混合2号混合1号混合4号混合3号煤炭3号煤炭2号,证明利用混合煤技术改变煤组分的方法可以改善高温煤灰气化反应活性,有利于煤气化过程。  相似文献   

2.
改进了用于美罗培南合成中氢解脱苄用Pd/C催化剂的制备工艺,主要讨论载体粒度、预处理方式、活性组分溶液p H、Na OH、Na HCO3和Na2CO3及用量和还原剂种类及用量对催化剂性能的影响。采用扫描电镜及透射电镜表征催化剂的微观形貌,结果表明,活性组分溶液p H对催化剂性能影响较大,(200~300)目的载体用0.15 mol·L-1的Na OH处理,用Na2CO3调节活性组分溶液至p H为4,甲酸为还原剂,每克钯的甲酸用量为6 m L。制备钯质量分数为4.0%~4.6%的催化剂,与对比的5%Pd/C催化剂相比,具有更低的金属含量和相同的催化效率。利用Na2CO3调节活性组分溶液p H,控制活性组分在载体表面的分布状态,得到不同活性及目标产物选择性的Pd/C催化剂。  相似文献   

3.
阐述了在壳牌煤气化装置中使用CO2气体替换N2气做为输送粉煤的气源,进入气化炉的CO2还原成C0以提高合成气中的有效气体成分。同时为了减少CO2排放和CO2综合利用,但要充分考虑不同煤种的反应活性也不同,有效的利用煤的反应活性。  相似文献   

4.
为了深入系统的研究煤焦与CO2及水蒸气的气化反应特性,综述了国内外对煤气化的主要影响因素、煤焦与CO2及水蒸气气化反应动力学、煤的结构特性在气化过程中的变化及CO2气化与水蒸气气化反应活性对比等方面的研究进展,并进行了总结。  相似文献   

5.
《化学工程》2017,(9):62-67
利用固定床装置对来自蒙古国的巴嘎诺尔煤(BN)、纳赖呼煤(NL)、阿拉格陶盖煤(AT)和塔本陶勒盖煤(TT)进行程序升温水蒸气气化实验,考察了4种煤样气化合成气主要组分H_2,CO和CO_2的生成规律,着重研究了煤样气化反应动力学和合成气各组分生成动力学特性,并对2种动力学特性进行分析。研究发现,BN,NL和AT3种煤样气化合成气中H_2和CO_2主要在较低温区(900—1 050 K)生成,CO则在较高温区(>1 000 K)生成,而TT煤气化反应H_2,CO和CO_2均需要在较高温区(>1 000 K)生成。AT和TT煤水蒸气气化反应动力学所选取的模型与其气化合成气各组分生成动力学所选取的模型一致,分别为均相模型和缩核模型。BN和NL煤气化生成H_2,CO_2的生成动力学适宜采用均相模型,而CO的生成动力学适宜采用缩核模型,但这2种煤样的水蒸气气化反应动力学均可采用均相模型。  相似文献   

6.
研究了不同载体(γ - Al2O3 HZSM -5、TiO2、SiO2和MgO)负载Fe催化剂上CO还原NO反应及CO同时还原NO和SO2反应.结果表明,Fe/γ - Al2O3催化剂对CO与NO反应具有良好的催化活性,但随着反应时间的延长,催化剂很快失活;在CO和NO反应中加入SO2,可以明显改善Fe/γ-Al2O3催化剂对CO还原NO反应的活性稳定性;O2和H2O对催化剂活性的影响较大,CO2对催化剂的影响较小.XRD结果表明,FeS2是催化剂的活性中心,在CO与NO反应后,FeS2转变为催化惰性的Fe7S8而导致催化剂活性下降;在CO与NO及SO2反应体系中引入O2后,Fe/γ - Al2O3催化剂上的活性组分FeS2被氧化为Fe2O3,导致催化剂失活.  相似文献   

7.
CaCO3脱硫剂对SO2的化学反应活性直接影响其烟气脱硫效率和脱硫剂的利用率.提高CaCO3的脱硫反应活性,对降低烟气脱硫生产成本具有重要的意义.在高1.1 m、内径12.5 cm的流化床反应器内的半干法烟气脱硫过程中,利用CO2气体为活化介质对CaCO3脱硫剂浆液进行活化处理,并以活化后的CaCO3为脱硫剂,实验研究了CO2活化对CaCO3脱硫剂烟气脱硫效率的影响.结果表明,CO2气体对CaCO3的活化处理,增大了CaCO3在溶液中的溶解度,提高了CaCO3与SO2间反应的活性,促进了CaCO3脱硫剂烟气脱硫效率的显著提高.在实验条件下,当饱和接近度为15~18 K、钙硫比为1.2、脱硫剂粒径为64 μm时,经CO2气体活化后的CaCO3脱硫剂其脱硫效率达到92%,接近于相同条件下Ca(OH)2的脱硫效率.该研究结果为提高CaCO3脱硫剂的烟气脱硫反应活性,提供了一种新的工艺技术方法.  相似文献   

8.
研究了甲烷氧化偶联六组分Na-W-Mn-Zr-S-P/SiO_2催化剂对乙烷氧化脱氢反应的催化性能.考察了不同原料气配比、温度和空速等条件下的催化剂活性.讨论了催化剂中S或P组分的含量对催化活性的影响.实验结果表明,S和P元素的加入可以提高催化剂的活性.660℃时六组分催化剂上乙烷的转化率为65.2%,乙烯的选择性为83.2%,此时得到的乙烯收率最高.乙烷与氧气比的增加有利于提高乙烯的选择性.较低反应温度时,空速的增加可以抑制碳氧化物(CO,CO_2)的生成,提高乙烯选择性.  相似文献   

9.
采用动态原位红外测试技术和TPD、TPSR方法,系统地研究了合成甲醇有关物种H_2、CO、CO_2和CH_3OH在铜基催化剂上的吸附与反应特性,判识了反应过程中在催化剂活性表面上的吸附态中间物的类型。在实验信息的基础上,提出了在催化剂活性表面上可能的基元过程序列结构。  相似文献   

10.
采用动态原位红外测试技术和TPD、TPSR方法,系统地研究了合成甲醇有关物种H_2、CO、CO_2和CH_3OH在铜基催化剂上的吸附与反应特性,判识了反应过程中在催化剂活性表面上的吸附态中间物的类型。在实验信息的基础上,提出了在催化剂活性表面上可能的基元过程序列结构。  相似文献   

11.
顾永达 《煤炭转化》1992,15(1):46-52
本文综述了近年来国外用程序升温脱附(TPD)技术在煤/半焦气化研究中的应用,着重讨论了担载金属半焦在含氧气化剂作用下碳-氧-金属之间的相互作用,H2O和CO2脉冲气化后的TPD可以分析担载不同金属盐类后脉冲气化所生成的H2,CO和CO2.一般来说。随担载金属量的增加.其反应掉的H2O和CO2量增加,生成的CO和H2增加。从碳和CO2及H2O的气化反应的氧平衡可以求出在反应过程中吸附在试样表面的氧量,由表面含氧络合物的形态和含量可以分析碳和金属与氧的相互作用,氧迁移机理及催化活性的大小等重要问题。  相似文献   

12.
化学链燃烧作为一种新颖的燃烧技术,在化石燃料燃烧释放能量的同时能够有效分离CO2。今以CO2为气化剂气化煤炭,基于Aspen Plus流程模拟软件,研究了煤/钙基载氧体化学链燃烧过程。结果表明,以CO2为煤气化剂,各反应器含水分少,可减少热损失。CaSO4载氧体具有载氧能力大以及反应活性良好等优点。气化炉中CO+H2含量随二氧化碳煤比增大逐渐增加后下降;随温度升高其含量先增加,后趋于平稳。燃料反应器中CO2+H2O含量随载氧体煤比增大,呈现先增大后减小的趋势;随温度升高其含量逐渐下降。空气反应器中CaSO4含量随空载比增大先增加后趋于平稳,随温度升高其含量趋于平稳后下降。气化炉中硫化物和氮化物含量随温度升高而下降,而燃料反应器和空气反应器中硫化物含量随温度升高增加趋势明显,氮化物含量变化不明显。最后确定了关键反应器操作参数:气化炉的二氧化碳煤比为1.8;燃料反应器的载氧体煤比为4.5;空气反应器的空载比为10.5和三反应器的操作温度分别为950、1000和1100℃。  相似文献   

13.
为了提高煤气化效率,分析了影响产能的重要因素——压力。研究了压力对煤热解过程、煤焦燃烧速度及煤焦气化反应的影响。研究发现:加压热解情况下,挥发分和焦油产率均下降,但煤气产量增加,推测是因为焦油发生二次反应造成的。随着压力的增大,煤焦明显膨胀且比表面积下降。但过高的压力下,膨胀度减弱,易生成孔隙率高、薄壁的煤焦颗粒。提高O2分压,煤燃烧速度加快且生成的小颗粒较多。提高气化剂分压,煤气化速度加快,且蒸汽分解速度大于CO2还原速度,但生成的煤气对气化反应有抑制作用。  相似文献   

14.
介绍了平顶山地区有代表性的7种煤样在800℃~1 200℃下,其脱灰煤焦-CO2气化反应活性的实验,主要考察了煤种、灰含量及粒径对煤焦反应性的影响,实验结果表明:煤种对煤焦-CO2气化反应有明显影响;煤中灰分对煤焦气化反应的影响主要表现在两个方面,一是灰成分对煤焦气化反应的催化作用,二是灰熔融性影响煤焦气化排渣行为。脱灰既可以除去煤焦中具有催化作用的矿物质,又可以增大煤焦的内表面积。  相似文献   

15.
通过对黑化恩德粉煤气化炉实际运行中历史数据的分析,找出对有效气含量造成影响的各种因素及影响规律。通过系统考察恩德炉的气化温度、压力、氧煤比、气汽比及气化剂组成等因素对有效气含量的影响,提出采用纯氧气化是提高恩德炉半水煤气中有效气(CO+H2)含量的有效方法。  相似文献   

16.
采用粉煤气化同水电解制取H2/CO摩尔比为2的合成气合成甲醇,CO可全部利用,CO2为零排放,避免了CO2对大气产生温室效应的危害。论述了粉煤加压纯氧气化工艺的特点、工业化过程、生产操作参数和主要设备。介绍了水电解制氢工艺的开发历程、工艺技术和工业化电解槽的设计,阐述了现代水电解技术的改进和研究进展状况。  相似文献   

17.
采用粉煤气化同水电解制取H2/CO摩尔比为2的合成气合成甲醇,CO可全部利用,CO2为零排放,避免了CO2对大气产生温室效应的危害。论述了粉煤加压纯氧气化工艺的特点、工业化过程、生产操作参数和主要设备。介绍了水电解制氢工艺的开发历程、工艺技术和工业化电解槽的设计,阐述了现代水电解技术的改进和研究进展状况。  相似文献   

18.
气化参数对气流床粉煤气化影响实验研究   总被引:1,自引:0,他引:1  
为评价和优化中国高、低灰熔点煤气化运行参数对气流床气化特性的影响,在1600℃的一维常压沉降式气流床气化实验系统上,着重研究了中国典型高、低灰熔点煤在1200~1600℃温度范围内、O/C摩尔比在0.9~1.2范围内的干煤粉气化特性。结果表明:随着温度的升高,产气中CO、H2含量逐渐增多,CO2、CH4含量逐渐减少,碳转化率有很大提高;随着O/C的增加,CO、H2含量不断减少,CO2逐渐增加;煤的灰熔融性也是影响煤气组分一个重要因素,当气化反应温度接近煤灰熔点温度时,煤气组分(CO+H2+CH4)达到一个最大值。  相似文献   

19.
Under high-temperature batch fluidized bed conditions and by employing Juye coal as the raw material,the present study determined the effects of the bed material,temperature,OC/C ratio,steam flow and oxygen carrier cycle on the chemical looping combustion of coal.In addition,the variations taking place in the surface functional groups of coal under different reaction times were investigated,and the varia-tions achieved by the gas released under the pyrolysis and combustion of Juye coal were analyzed.As revealed from the results,the carbon conversion ratio and rate were elevated significantly,and the vol-ume fraction of the outlet CO2 remained more than 92% under the oxygen carriers.The optimized reac-tion conditions to achieve the chemical looping combustion of Juye coal consisted of a temperature of 900℃,an OC/C ratio of 2,as well as a steam flow rate of 0.5 g·min-1.When the coal was undergoing the chemical looping combustion,volatiles primarily originated from the pyrolysis of aliphatic-CH3 and-CH2,and CO and H2 were largely generated from the gasification of aromatic carbon.In the CLC process,H2O and CO2 began to separate out at 270 ℃,CH4 and tar began to precipitate at 370 ℃,and the amount of CO2 was continuously elevated with the rise of the temperature.  相似文献   

20.
张文娟  周润英  姚杰  梅静梁 《安徽化工》2012,38(1):59-62,65
采用Aspen Plus软件对淮南煤气化进行了稳态流程模拟研究,结果表明:O2流量的增大导致气化温度快速升高;合成气中CO、H2以及有效合成气(CO+H2)的体积分率随O2流量的增加呈先增大后减小的趋势;CO2和H2O的变化趋势则相反。氧煤比在0.03~0.17kg/kg区域内,有效气体积分率均大于60%;且在氧煤比为0.1kg/kg时,有效合成气体积分率达到最大值64.2%。氧煤比在0.06~0.14kg/kg区域内,汽氧比的增大会导致气化温度随之减小,并直接影响合成气组分。合成气中,CO、H2、CH4以及有效合成气(CO+H2)的体积分率随汽氧比的增大而降低;H2O和CO2体积分率则随之增大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号