首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到7条相似文献,搜索用时 0 毫秒
1.
《Quaternary Research》2014,81(3):488-499
Paleoclimatic reconstruction based on aeolian sediments in the eastern Qaidam Basin (QB) has been hindered by the limited chronological data. Here we present 61 Optically Stimulated Luminescence (OSL) ages. On the basis of these OSL ages and the lithologic stratigraphy, we propose the ‘effective moisture index (EMI)’ for aeolian sediments to reconstruct the effective moisture change. Based on the EMI from twelve sections, the effective moisture change, moisture sources and relevant mechanisms for paleoclimatic change in the eastern QB are discussed. The results indicate that (1) aeolian deposition started at least before 12.4 ± 0.7 ka during the deglaciation, the paleosols developed at the early and mid-Holocene, and aeolian sand and loess accumulated at mid- and late Holocene; (2) effective moisture history was: hyper-arid at 12.8–11.6 ka, humid and variable at 11.6–8.3 ka, moderately humid and stable at 8.3–3.5 ka, and increasingly arid at 3.5–0 ka; (3) the effective moisture change was mainly controlled by the Asian summer monsoon (ASM), which mainly followed the change of Northern Hemispheric summer insolation, and the westerlies strengthened and increased the aridity in the QB when the ASM shrank.  相似文献   

2.
The Lanping?Simao Basin is located on the southeastern Tibetan Plateau, China, and contains massive evaporites. The origin of evaporites in the basin has been hotly debated because of the strong transformation by tectonic movement. Forty halite samples from borehole MK-3 in the Mengyejing area of the basin were collected and analyzed using XRD, Cl-Sr isotopes and chemical compositions to trace the origin of the evaporites in the basin. The Br × 103/Cl ratios of the halite samples are between 0 and 0.55, most of which are synchronized with the law of seawater evaporation and at the stage of halite precipitation from seawater, indicating that the evaporites are mainly of marine origin. The 87Sr/86Sr ratios range from 0.707489 to 0.711279; after correction, the 87Sr/86Sr 145 Ma ratios range from 0.704721 to 0.707611, equivalent with the 87Sr/86Sr ratios of seawater at 145 Ma, indicating a marine origin. The decay of 87Rb in the evaporite during deposition, change of the depositional environment and the unsealed environment at a later period resulted in the present 87Sr/86Sr ratios of some samples being high. The δ37Cl value compositions range from ?0.38‰ to 0.83‰, which is consistent with the δ37Cl value composition of the world marine halite (?0.6‰ to 0.4‰), further confirming that seawater is the main origin. In addition, the high δ37Cl value of some samples at the boundary of the upper and lower evaporite layers might be related to the influence of δ37Cl-rich brine and the incomplete dissolution of the halite.  相似文献   

3.
黑石山铜铅锌矿床位于东昆仑造山带中段的五龙沟地区,矿区内的石英二长岩-正长岩发育有暗色微粒包体,本研究在包体中发现了硫化物。锆石U-Pb定年显示,正长岩形成于239.4±1.0Ma,具有富Si和K,贫Mg、Cr、Ni,明显的Eu负异常,富集大离子亲石元素、亏损高场强元素,较为富集的Sr-Nd-Hf同位素特征。暗色微粒包体由斜长石和角闪石组成,可见角闪石堆晶,贫硅、富钙、铝、碱和铁,Mg#值为38.37,具有明显的Eu负异常,轻重稀土分馏弱。结合宿主正长岩和暗色包体的矿物成分相似性和岩相学特征,本文认为暗色微粒包体与正长岩来自同一个岩浆房,属于同源岩浆包体,是岩浆房早期分离结晶相,被中酸性岩脉携带上升至正长岩熔体中,一起侵位至浅部地壳。综合岩石地球化学、同位素和矿物成分,本文认为正长岩是下地壳含水镁铁质岩石在压力较低条件下部分熔融的产物。暗色微粒包体中发育硫化物,且包体岩浆的硫含量远高于正长岩岩浆,指示岩浆房的早期分离结晶相带走了硫,使残余熔体贫硫。  相似文献   

4.
The Bilong Co oil shale zone is located in the South Qiangtang depression. This zone, together with the Shengli River-Changshe Mountain oil shale zone in the North Qiangtang depression, northern Tibet plateau, represents the potentially largest marine oil shale resource in China. Seventeen samples including oil shale and micritic limestone were collected from the Bilong Co oil shale area to determine the concentrations, distribution patterns, occurrences and origins of platinum group elements (PGEs) in marine oil shale. The oil shale samples from the Bilong Co area exhibit very low total PGE contents ranging from 1.04 to 2.96 ng/g with a weighted mean value of 1.686 ng/g, while the micritic limestone samples from the Bilong Co area exhibit a little lower PGE value ranging from 0.413 to 1.11 ng/g. PGEs in oil shale samples are characterized by high contents in Pd (average 0.79 ng/g), Os (average 0.123 ng/g) and Pt (average 0.644 ng/g) compared with Ru (average 0.068 ng/g), Rh (average 0.033 ng/g) and Ir (average 0.026 ng/g). The highest values for individual PGEs are not uniformly distributed in the section. Clearly, the PGEs are generally enriched in the oil shale samples near the boundary between micritic limestone and oil shale.The individual PGEs in oil shale samples from the Bilong Co area exhibit various modes of occurrence. Ruthenium and Pt occur mainly in pyrite, while Pd is associated mainly with organic matter and Mg-minerals. Rhodium and Os are controlled mainly by pyrite and organic matter. Iridium is present mainly in other Fe-bearing minerals, rather than pyrite. The PGEs in the Bilong Co oil shale are mainly of seawater origin and possibly influenced by terrigenous supply.  相似文献   

5.
The Changyi banded iron formation (BIF) in the eastern North China Craton (NCC) occurs within the Paleoproterozoic Fenzishan Group. Three types of metamorphic wallrocks interbedded with the BIF bands are identified, including plagioclase gneisses and leptynites, garnet-bearing gneisses and amphibolites. Protolith reconstruction suggests that the protoliths of the plagioclase gneisses and leptynites are mainly graywackes with minor contribution of pelitic materials, the garnet-bearing gneisses are Fe-rich pelites contaminated by clastics, and the amphibolites are tholeiitic rocks. Trace elements of La, Th, Sc and Zr of the plagioclase gneisses and leptynites and the garnet-bearing gneisses support that these meta-sedimentary rocks were probably derived from recycling of Archean rocks with felsic and mafic materials differentiated into different rock types. 207Pb/206Pb ages of detrital zircons from the meta-sedimentary rocks concentrate at 2.7–3.0 Ga, confirming their derivation from the Archean rocks. The presence of several Paleoproterozoic detrital zircons (2240 to 2246 Ma), however, also suggests minor involvement of Paleoproterozoic materials. The Archean detrital zircons have εHf(t) values varying from − 0.7 to 7.6, which mainly fall between the 3.0 Ga and 3.3 Ga average crustal evolution lines on the age vs. εHf(t) diagram, further illustrating that the rocks providing materials for the meta-sedimentary rocks mainly originated from partial melting of a Mesoarchean crust. This is strongly supported by their crust-like trace element distribution patterns (such as Nb, Ta, P and Ti depletion) and ancient Nd depleted mantle model ages (TDM = 2.9–3.4 Ga). In addition, the remarkably high εHf(t) values (7.5 to 9.3) of the Paleoproterozoic detrital zircons constrain the Paleoproterozoic materials to originate from a depleted mantle. The amphibolites show low SiO2 (46.5 to 52.8 wt.%) and high MgO (5.68 to 10.9 wt.%) contents, crust-like trace element features and low εNd(t) values (− 4.5 to − 0.3), suggesting that these ortho-metamorphic rocks were mainly derived from subcontinental lithospheric mantle with some contamination by Archean crustal materials. Since an intra-continental environment was required for the formation of the above metamorphic rocks, these rocks not only confine the depositional environment of the Changyi BIF to be an intra-continental rift, but also support the rifting processes of the eastern NCC during Paleoproterozoic.  相似文献   

6.
In this paper we present new zircon U–Pb ages, Hf isotope data, and whole-rock major and trace element data for Early Mesozoic intrusive rocks in the Erguna Massif of NE China, and we use these data to constrain the history of southward subduction of the Mongol–Okhotsk oceanic plate, and its influence on NE China as a whole. The zircon U–Pb dating indicates that Early Mesozoic magmatic activity in the Erguna Massif can be subdivided into four stages at ~ 246 Ma, ~ 225 Ma, ~ 205 Ma, and ~ 185 Ma. The ~ 246 Ma intrusive rocks comprise a suite of high-K calc-alkaline diorites, quartz diorites, granodiorites, monzogranites, and syenogranites, with I-type affinities. The ~ 225 Ma intrusive rocks consist of gabbro–diorites and granitoids, and they constitute a bimodal igneous association. The ~ 205 Ma intrusive rocks are dominated by calc-alkaline I-type granitoids that are accompanied by subordinate intermediate–mafic rocks. The ~ 185 Ma intrusive rocks are dominated by I-type granitoids, accompanied by minor amounts of A-types. These Early Mesozoic granitoids mainly originated by partial melting of a depleted and heterogeneous lower crust, whereas the coeval mafic rocks were probably derived from partial melting of a depleted mantle modified by subduction-related fluids. The rock associations and their geochemical features indicate that the ~ 246 Ma, ~ 205 Ma, and ~ 185 Ma intrusive rocks formed in an active continental margin setting related to the southward subduction of the Mongol–Okhotsk oceanic plate. The ~ 225 Ma bimodal igneous rock association formed within an extensional environment in a pause during the subduction process of the Mongol–Okhotsk oceanic plate. Every magmatic stage has its own corresponding set of porphyry deposits in the southeast of the Mongol–Okhotsk suture belt. Taking all this into account, we conclude the following: (1) during the Early Mesozoic, the Mongol–Okhotsk oceanic plate was subducted towards the south beneath the Erguna Massif, but with a pause in subduction at ~ 225 Ma; and (2) the southward subduction of the Mongol–Okhotsk oceanic plate not only caused the intense magmatic activity, but was also favorable to the formation of porphyry deposits.  相似文献   

7.
We present the first evidence of an early Paleozoic terrane in the southern Yanbian region, NE China. We used LA-ICP-MS zircon U–Pb and Hf isotope techniques to analyze one plagioclase gneiss and two garnet-bearing two-mica quartz schists from the early Paleozoic Jiangyu Group, as well as two tonalites that intruded the Jiangyu Group. The tonalites yield weighted mean 206Pb/238U zircon crystallization ages of 423 and 422 Ma. Zircons from the Jiangyu Group gneiss and two schist samples yield maximum depositional ages of 439 ± 4, 443 ± 2, and 443 ± 5 Ma, respectively. These constraints, together with the age of the tonalite intrusion, indicate that the Jiangyu Group was deposited between 443 and 423 Ma (i.e., Silurian). In addition, detrital zircon age spectra of the three Jiangyu Group samples exhibit prominent age peaks at 442, 473, 513, 565, 600, 635, 671, 740, 1000, and 1162 Ma, as well as secondary peaks between 1344 and 3329 Ma. The occurrence of the prominent Meso- and Neoproterozoic detrital zircon age populations for the Jiangyu Group, combined with the corresponding zircon Hf isotopic data, reveals that the Jiangyu Terrane has a tectonic affinity with northeastern Gondwana. The early Paleozoic magmatism, as suggested by the medium-K calc-alkaline I-type tonalite intrusion and Jiangyu Group detrital zircon age spectra, corresponds to coeval subduction–accretion events along the southern margin of the eastern Central Asian Orogenic Belt (CAOB). Accordingly, we propose that the Jiangyu Group is part of an exotic terrane that rifted from northeastern Gondwana, drifted northward, and ultimately became involved in the early Paleozoic tectonic evolution of the southern margin of the eastern CAOB after the Early Cambrian.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号