首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Offset quadrature amplitude modulation‐based orthogonal frequency division multiplexing (OFDM) systems cannot be directly combined with the Alamouti code because of the intrinsic imaginary interference. In this paper, we propose a block‐wise space‐frequency block coding (SFBC) scheme and a block‐wise space‐time block coding (STBC) scheme for offset quadrature amplitude modulation‐based OFDM systems, which achieve bit error rate performances that are close to OFDM systems. The proposed schemes satisfy the orthogonality condition of the Alamouti code in the complex field with guard band/intervals. To improve the spectral efficiency of the block‐wise SFBC scheme, we also consider the case without the guard band. It is observed that only the two innermost subcarriers do not satisfy the complex orthogonality condition when the guard band is removed. Then, a simple equalization scheme is proposed to independently equalize the two innermost subcarriers. Simulation results show that the block‐wise SFBC scheme works well under channels with mild‐to‐moderate frequency selectivity, and the block‐wise (STBC ) scheme suffers less than 1 dB loss under severe frequency selective channels at the bit error rate of 10 − 3, when only a simple one tap zero‐forcing equalizer is employed. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

2.
We propose a new space‐time block coding (STBC) for asynchronous cooperative systems in full‐duplex mode. The orthogonal frequency division multiplexing (OFDM) transmission technique is used to combat the timing errors from the relay nodes. At the relay nodes, only one OFDM time slot is required to delay for a pair‐wise symbol swap operation. The decoding complexity is lower for this new STBC than for the traditional quasi‐orthogonal STBC. Simulation results show that the proposed scheme achieves excellent performances.  相似文献   

3.
Differential unitary space‐time modulation (DUSTM) has emerged as a promising technique to obtain spatial diversity without intractable channel estimation. This paper presents a study of the application of DUSTM on multiple‐input multiple‐output orthogonal frequency division multiplexing (MIMO‐OFDM) systems with frequency‐selective fading channels. From the view of a correlation analysis between subcarriers of OFDM, we obtain the maximum achievable diversity of DUSTM on MIMO‐OFDM systems. Moreover, an efficient implementation strategy based on subcarrier reconstruction is proposed, which transmits all the signals of one signal matrix in one OFDM transmission and performs differential processing between two adjacent OFDM blocks. The proposed method is capable of obtaining both spatial and multipath diversity while reducing the effect of time variation of channels to a minimum. The performance improvement is confirmed by simulation results.  相似文献   

4.
In this paper, we discuss the design problem and the robustness of space‐frequency trellis codes (SFTCs) for multiple input multiple output, orthogonal frequency division multiplexing (MIMO‐OFDM) systems. We find that the channel constructed by the consecutive subcarriers of an OFDM block is a correlated fading channel with the regular correlation function of the number and time delay of the multipaths. By introducing the first‐order auto‐regressive model, we decompose the correlated fading channel into two independent components: a slow fading channel and a fast fading channel. Therefore, the design problem of SFTCs is converted into the joint design in both slow fading and fast fading channels. We present an improved design criterion for SFTCs. We also show that the SFTCs designed according to our criterion are robust against the multipath time delays. Simulation results are provided to confirm our theoretic analysis.  相似文献   

5.
多输入多输出正交频分复用(MIMO-OFDM)可以提高系统在频率选择性衰落信道的传输性能.与OFDM系统一样,MIMO-OFDM系统也存在高峰值平均功率比(PAPR)的问题.为此,提出了一种降低空时分组编码MIMO-OFDM系统PAPR的正交部分传输序列算法,运用这种算法,利用傅里叶变换的性质,通过调整空时编码与基带正交调制的顺序,对两天线发射端,可以降低算法近一半的复杂度,且可以减少一半的边信息.利用高功率放大器的非线性模型,得到了瑞利衰落信道下PAPR降低后系统的误码率性能.仿真结果证明了该方法的有效性.  相似文献   

6.
结合STBC和VBLAST混合编码结构的优点,提出将块分组编码应用于MIMO-OFDM系统.在发射端数据流分成两层输入块分组编码器后进行OFDM调制,在接收端,采用MMSE干扰抑制算法译码.块分组编码将数据符号按层分块后交叉通过不同的天线对发射,数据流之间产生了一定交织效果,使编码获得了更好的分集增益.  相似文献   

7.
This paper presents the idea of sparse channel estimation using compressed sensing (CS) method for space–time block coding (STBC), and spatially multiplexing (SM) derived hybrid multiple‐input multiple‐output (MIMO) Asymmetrically clipped optical‐orthogonal frequency division multiplexing (ACO‐OFDM) optical wireless communication system. This hybrid system accounts multiplexing gain of SM and diversity gain of STBC technique. We present a new variant of sparsity adaptive matching pursuit (SaMP) algorithm called dynamic step‐size SaMP (DSS‐SaMP) algorithm. It makes use of the inherent and implicit structure of SaMP, along with dynamic adaptivity of step‐size feature which is compatible with the energy of the input signal, thus the name dynamic step size. Existing CS‐based recovery algorithms like orthogonal matching pursuit, SaMP, adaptive step‐size SaMP, and proposed DSS‐SaMP were compared for hybrid MIMO‐ACO‐OFDM visible light communication system. The performance analysis is demonstrated through simulation results with respect to bit error rate, symbol error rate, mean square error, computational complexity, and peak‐to‐average power ratio. Simulation results show that the proposed technique gives improved performance and lesser computational complexity in comparison with conventional estimation algorithms.  相似文献   

8.
In this paper we employ a 2 × 2 Multiple‐Input Multiple‐Output (MIMO) hardware platform to evaluate, in realistic indoor scenarios, the performance of different space‐time block coded (STBC) transmissions at 2.4 GHz. In particular, we focus on the Alamouti orthogonal scheme considering two types of channel state information (CSI) estimation: a conventional pilot‐aided supervised technique and a recently proposed blind method based on second‐order statistics (SOS). For comparison purposes, we also evaluate the performance of a Differential (non‐coherent) space‐time block coding (DSTBC). DSTBC schemes have the advantage of not requiring CSI estimation but they incur in a 3 dB loss in performance. The hardware MIMO platform is based on high‐performance signal acquisition and generation boards, each one equipped with a 1 GB memory module that allows the transmission of extremely large data frames. Upconversion to RF is performed by two RF vector signal generators whereas downconversion is carried out with two custom circuits designed from commercial components. All the baseband signal processing is implemented off‐line in MATLAB ®, making the MIMO testbed very flexible and easily reconfigurable. Using this platform we compare the performance of the described methods in line‐of‐sight (LOS) and non‐line‐of‐sight (NLOS) indoor scenarios. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

9.
This paper investigates blind channel estimation and multiuser detection for quasi‐synchronous multi‐carrier code‐division multiple‐access (MC‐CDMA) multiple‐input multiple‐output (MIMO) systems with quasi‐orthogonal space–time block codes (QO‐STBC). Subspace‐based blind channel estimation is proposed by considering a QO‐STBC scheme that involves four transmit antennas and multiple receive antennas. Based on the first‐order perturbation theory, the mean square error of the channel estimation is derived. With the estimated channel coefficients, we employ minimum output energy and eigenspace receivers for symbol detection. Using the QO‐STBC coding property, the weight analyses are performed to reduce the computational complexity of the system. In addition, the forward–backward averaging technique is presented to enhance the performance of multiuser detection. Numerical simulations are given to demonstrate the superiority of the proposed channel estimation methods and symbol detection techniques. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

10.
In this paper, we introduce a new wireless system architecture using space‐time block coding schemes (STBC) and non‐orthogonal multiple access (NOMA) in millimeter wave (mmWave) large‐scale MIMO systems. The proposed STBC mmWave large‐scale MIMO‐NOMA system utilizes two MIMO subarrays, transmitting data over two channel vectors to mobile users. To reduce the communication overhead and latency in the system, we utilize random beamforming with optimal coefficients at the base station and random‐near random‐far user pairing in implementing the NOMA scheme. Our results show that the proposed STBC mmWave large‐scale MIMO‐NOMA technique significantly outperforms the previous counterparts.  相似文献   

11.
Channel identifiability for multiple‐input multiple‐output space–time block code (MIMO‐STBC) systems using Joint Approximate Diagonalization of Eigenmatrices (JADE) is studied in this paper. Compared with the previous blind MIMO‐STBC channel estimation methods in literature, the method proposed in this paper is more suitable for non‐cooperative scenario because it needs less prior information and can be applied to a general class of STBCs. The main contribution of the paper consists in the theoretical proof that, although the sources transmitted by different antennas of MIMO‐STBC systems are not independent, they can be retrieved from the received data by directly using JADE in most cases. The conclusion is also demonstrated by a simulation. This shows that the classical JADE algorithm can be applied to a wider range of situations rather than strictly independent sources. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

12.
Selective space‐time coding and selection diversity can be viewed as practical means to reduce the implementation complexity of multiple‐input multiple‐output (MIMO) systems while still taking benefit of the use of multiple antennas. In this paper, we evaluate the performance of selective space‐time block coding (selective‐STBC) and antenna selection diversity, and analyze the performance of both techniques under perfect and imperfect channel state information (CSI) available at both ends of the transmission link. Our performance analysis reveals that, under perfect or imperfect CSI and ideal feedback channel, selective‐STBC yields a loss in selection diversity gains and that selecting just a single antenna at the transmitter side is the best transmission strategy. We also show that selective‐STBC and antenna selection diversity have different behaviors when the feedback channel is imperfect. Indeed, it is shown that selection diversity outperforms selective‐STBC when the feedback channel is of high quality, while selective‐STBC yields better performance when the feedback channel is of low quality. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

13.
In this paper, we extend the geometrical one‐ring multiple‐input multiple‐output (MIMO) channel model with respect to frequency selectivity. Our approach enables the design of efficient and accurate simulation models for wideband space‐time MIMO channels under isotropic scattering conditions. Two methods will be provided to compute the parameters of the simulation model. Especially, the temporal, frequency and spatial correlation properties of the proposed wideband space‐time MIMO channel simulator are studied analytically. It is shown that any given specified or measured discrete power delay profile (PDP) can be incorporated into the simulation model. The high accuracy of the simulation model is demonstrated by comparing its statistical properties with those of the underlying reference model with specified correlation properties in the time, frequency and spatial domain. As an application example of the new MIMO frequency‐selective fading channel model, we study the influence of various channel model parameters on the system performance of a space‐time coded orthogonal frequency division multiplexing (OFDM) system. For example, we investigate the influence of the antenna element spacings of the base station (BS) antenna as well as the mobile station (MS) antenna. It turns out that an increasing of the antenna element spacing at the BS side results in a higher diversity gain than an increasing of the antenna element spacing at the MS side. Furthermore, the diversity gain brought in by space‐time block coding schemes is investigated by simulation. Our results show that transmitter diversity can significantly reduce the symbol error rate (SER) of multiple antenna systems. Finally, the influence of the Doppler effect and the impact of imperfect channel state information (CSI) on the system performance is also investigated. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
Space–time coded multiple‐input multiple‐output (MIMO) technology is an important technique that improves the performance of wireless communication systems significantly without consuming bandwidth resource. This paper first discusses the characteristics and limitations of traditional symbol‐level space–time coding schemes, which work largely on the basis of an assumption that signals are sent to a block‐fading channel. Therefore, the symbol‐level space–time coding schemes rely on symbol‐level signal processing. Taking advantage of orthogonal complementary codes, we propose a novel MIMO scheme, in this paper, based on chip‐level space–time coding that is different from the traditional symbol‐level space–time coding. With the help of space–time–frequency complementary coding and multicarrier modem, the proposed scheme is able to achieve multipath interference‐free and multiuser interference‐free communications with simple a correlator detector. The proposed chip‐level space–time coded MIMO works well even in a fast fading channel in addition to its flexibility to achieve diversity and multiplexing gains simultaneously in varying channel environments. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
Single carrier‐frequency division multiple access (SC‐FDMA) has been adopted as the uplink transmission standard in fourth generation cellular network to enable the power efficiency transmission in mobile station. Because multiuser MIMO (MU‐MIMO) is a promising technology to fully exploit the channel capacity in mobile radio network, this paper investigates the uplink transmission of SC‐FDMA systems with orthogonal space frequency block codes (SFBC). Two linear MU‐MIMO receivers, orthogonal SFBC (OSFBC) and minimum mean square error (MMSE), are derived for the scenarios with limited number of users or adequate receive antennas at base station. In order to effectively eliminate the multiple access interference (MAI) and fully exploit the capacity of MU‐MIMO channel, we propose a turbo MU‐MIMO receiver, which iteratively utilizes the soft information from maximum a posteriori decoder to cancel the MAI. By the simulation results in several typical MIMO channels, we find that the proposed MMSE MU‐MIMO receiver outperforms the OSFBC receiver over 1 dB at the cost of higher complexity. However, the proposed turbo MU‐MIMO receivers can effectively cancel the MAI under overloaded channel conditions and really achieve the capacity of MU‐MIMO channel. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

16.
正交空时分组码在OFDM系统中的性能估计   总被引:1,自引:0,他引:1  
在宽带OFDM系统中对正交空时分组码方案进行了研究,根据Almouti方案的译码原理给出了在正交空时分组码传输的频率选择性衰落信道条件下接收机输出瞬时信噪比的一般表达式,同时分两种情况进一步分析了其最小距离球界的符号差错性能。结果表明,在系统发送天线数、接收天线数及多径数目乘积较小的情形下,系统可以达到最大的分集增益。  相似文献   

17.
Cross‐layer design is a generic designation for a set of efficient adaptive transmission schemes, across multiple layers of the protocol stack, that are aimed at enhancing the spectral efficiency and increasing the transmission reliability of wireless communication systems. In this paper, one such cross‐layer design scheme that combines physical layer adaptive modulation and coding (AMC) with link layer truncated automatic repeat request (T‐ARQ) is proposed for multiple‐input multiple‐output (MIMO) systems employing orthogonal space‐‐time block coding (OSTBC). The performance of the proposed cross‐layer design is evaluated in terms of achievable average spectral efficiency (ASE), average packet loss rate (PLR) and outage probability, for which analytical expressions are derived, considering transmission over two types of MIMO fading channels, namely, spatially correlated Nakagami‐m fading channels and keyhole Nakagami‐m fading channels. Furthermore, the effects of the maximum number of ARQ retransmissions, numbers of transmit and receive antennas, Nakagami fading parameter and spatial correlation parameters, are studied and discussed based on numerical results and comparisons. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

18.
针对通信系统时变信道采用蒙特卡罗算法进行盲信道跟踪,并将该盲跟踪算法用于多天线信道及空时分组编码的情况,在相同的系统条件下与卡尔曼滤波跟踪算法进行了性能比较,并讨论了系统存在载波频偏情况下的跟踪性能。仿真结果表明,序贯蒙特卡罗算法可以对时变信道进行很好的跟踪。  相似文献   

19.
Multiple input multiple output (MIMO) antenna system is a promising candidate to meet the demands of 4th Generation (4G) cellular communication systems by offering increased spectral efficiency through the spatial multiplexing (SM) gain, and improved link reliability through the space–time block coding (STBC) diversity gain. This paper presents a new scheme that combines the dual-mode SM/STBC and the antenna subset selection (AnSS) schemes. In the proposed scheme, the combination of the SM/STBC switching and the full antenna subset selection (AnSS) at both the transmitter (Tx) and the receiver (Rx) ends of the communication channel are adaptively selected through a simple algorithm based on the singular values of the channel matrix at the Rx side. Thus, the new scheme achieves the best BER performance over the previous works regardless of the data rate. The simulation results show that the proposed scheme with the full AnSS outperforms the previous works, by up to the 12.5 dB at the bit error rate (BER) of 10‐5105. Further, a partial AnSS is also proposed which dramatically reduces both the computational complexity (by 31%) and the hardware (by 50%), cost, without any appreciable loss in the BER performance, when compared with the full AnSS.  相似文献   

20.
In this paper, we propose and give the performance of a novel uplink system based on the combination of multi-carrier (MC), code division multiple access (CDMA) and multiple input multiple output (MIMO) techniques. First, we describe the interests of spread-spectrum multi-carrier multiple access (SS-MC-MA) scheme for uplink, especially compared to MC-CDMA. Classically, with SS-MC-MA, each user spreads its data symbols on a specific subset of adjacent or multiplexed subcarriers, to facilitate the channel estimation and reduce complexity at the reception. In order to compensate for the lack of frequency diversity of SS-MC-MA with adjacent subcarriers, we first combine it with an orthogonal space-time block code (STBC) and demonstrate the resulting spatial diversity gain. Then, we propose to allocate the subsets to the different users by applying a frequency hopping pattern (FH). In that case, each user benefits from the frequency diversity linked to the total bandwidth as with the multiplexed subcarriers solution, while keeping the advantages of the adjacent subcarriers solution. The gain provided by the use of the frequency hopping is stressed on. Finally, the performance of this scheme is evaluated over realistic MIMO channel with channel turbo coding for systems offering asymptotic spectrum efficiency of 1, 2, 3 and 4.5 bit/s/Hz. Thus, the efficiency of the novel proposed STBC FH SS-MC-MA system as a very promising multiple access and modulation scheme for the uplink of the future wideband wireless networks is successfully demonstrated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号