首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
一、概述目前超精密加工方法主要有三种,即超精密切削、磨削、研磨及抛光。在当前大量使用的新材料中,有很多属于硬脆材料,如各种工程陶瓷、光学玻璃、单晶硅等。这些材料由于其自身性能的特点,很难或无法使用金刚石刀具进行超精密切削加工,而使用研磨方法往往又很难满足工件形状精度和加工效率的要求,而且难以实现自动化和在线测量,因此超精密磨削成为硬脆材料超精密加工的最重要手段。二、硬脆材料超精密磨削机理及工艺要求硬脆材料的特点是硬度很高,但韧性、塑性很差,断裂韧性小,在常规加工过程中,主要以裂纹生成一扩展一碎裂…  相似文献   

2.
高陡度非球面光学元件因形状特点,其毛坯成形、研磨和抛光等加工技术难度远高于传统的球面元件.其加工过程中根据不同材料和不同加工阶段分别应用化学气相沉积(CVD)精密复制方法、单点金刚石车削(DPT)、金刚石磨削、确定性微研磨(DMG)、磁流变抛光(MRF)和射流抛光等先进制造技术.分析高陡度非球面光学元件的形状特征,重点讨论高陡度非球面光学元件的加工技术及关键工艺,针对凹面抛光加工等技术难点做出工艺分析.  相似文献   

3.
大口径光学元件超精密加工技术是多种学科新技术成果的综合应用,促进了民用和国防等尖端技术领域的发展,在国家大光学工程的推动下,我国的超精密加工技术取得显著的成果。围绕大口径光学元件“高精度磨削+确定性抛光”超精密加工体系,介绍该领域研究进展及厦门大学微纳米加工与检测联合实验室取得的相关研究成果,主要针对光学元件磨削和抛光两个加工流程,详细分析磨削装备技术、磨削工艺技术、精密检测技术、可控气囊抛光技术、加工环境监控技术和中频误差评价技术等关键技术的研究应用情况。这些技术研究从超精密加工的需求出发,借鉴国内外的研究经验和成果,通过对装备、工艺、检测等各方面整合,形成具有自主知识产权的大口径光学元件磨抛超精密加工体系,从而实现大口径光学元件高精度、低缺陷加工。  相似文献   

4.
超精密加工现状综述   总被引:42,自引:0,他引:42  
超精密加工是获得高形状精度、表面精度和表面完整性的必要手段.精密光学、机械、电子系统中所用的先进陶瓷或光学玻璃元件通常需要非常高的形状精度和表面精度(如0.1 nm级表面粗糙度)及较小的加工变质层.掌握超精密加工过程中材料去除规律和损伤层特性对提高加工的稳定性与经济性十分重要.对超精密加工中的超精密切削、超精密磨削和超精密研磨抛光技术进行综述,重点介绍各种典型加工方法及其材料去除机理.从加工精度和加工效率角度对上述几类超精密加工方法进行比较,介绍以实现高效精密加工为目的的半固着磨粒加工技术.对超精密加工的发展趋势进行预测.  相似文献   

5.
光学玻璃塑性模式超精密磨削加工的研究   总被引:14,自引:0,他引:14  
陈明君  张飞虎  董申  李旦 《中国机械工程》2001,12(4):460-463,484
利用超精密磨床磨削加工6种典型的光学玻璃,先从理论上研究了脆性材料脆塑转变的临界值,然后对脆性材料作了大量磨削实验,实验结果表明,超精密磨削脆性材料时存在着断裂模式,断裂与塑性模式、塑性模式,这些模式主要由砂轮磨粒的切削深度进行控制,该磨削表面粗糙度与磨粒尺寸的大小,砂轮的进给量及玻璃的材料有关,当光学玻璃在塑性模式磨削时,其表面层不会产生任何裂纹缺陷,利用超精密磨床进行磨削加工,获得的表面粗糙度Ra低于5nm。  相似文献   

6.
半导体、光学玻璃及工程陶瓷等硬脆性材料因其独特的物理、机械性能 ,已成为尖端科学技术中应用最活跃的先进材料。世界许多国家在投入大量人力物力开发具有特殊价值的新型硬脆性材料的同时 ,对这些材料的加工技术进行了广泛的研究。硬脆性材料的精密、超精密加工 ,普遍采用磨削、研磨等加工技术。在磨削过程中 ,减少磨粒单刃切除量是减少加工表面微观破损、提高加工精度的发展方向。本文结合塑性方式磨削技术和电泳磨削技术 ,对半导体硅材料进行塑性方式磨削试验研究。一、塑性磨削技术材料的去除机理一般分为脆性和塑性。硬脆性材料的特点…  相似文献   

7.
硬脆光学晶体材料超精密切削理论研究综述   总被引:15,自引:1,他引:14  
硬脆光学晶体材料在航空航天、光学和光电子等领域得到了广泛应用,其超精密切削加工技术越来越受到重视,从切削模型、脆塑转变机理和研究方法等三个方面介绍了硬脆光学晶体材料超精密切削技术的发展和国内外研究现状,并对今后的研究方向作了阐述。  相似文献   

8.
超精密切削时刀具切削刃的作用机理分析   总被引:3,自引:0,他引:3  
分析了金刚石刀具切削刃的切削作用、脆性材料超精密切削时切屑形成机理;对金刚石刀具切削刃钝圆半径、切削厚度、切削角三者之间的关系进行了描述。结果表明:脆性材料可以实现塑性域超精密切削加工;控制切削参数可以加工出满足要求的表面粗糙度和表面波纹度,为生产实际提供可靠的工艺条件及技术参数。  相似文献   

9.
当前,电子材料和光学材料大都系高脆性材料,要把这些材料制作成功能零件,必须采用超精密磨削技术及利用此技术的生产系统。在工业界,通常把这类加工技术称作“新一代的生产加工技术”。随着光学元件的飞速发展,超精密磨削技术的作用更加突出。光技术对  相似文献   

10.
加速发展我国的精密和超精密加工技术   总被引:3,自引:0,他引:3  
精密和超精密加工技术是机械制造最主要的发展方向之一。本文介绍了精密和超精密加工技术的最新发展情况,如金刚石超精密切削、精密磨削和研磨、精密和超精密机床、精密加工中的检测和误差补偿、精加工的环境条件等。最后提出对我国发展精密和超精密加工技术的一些意见。  相似文献   

11.
Brittle materials have been widely employed for industrial applications due to their excellent mechanical, optical, physical and chemical properties. But obtaining smooth and damage-free surface on brittle materials by traditional machining methods like grinding, lapping and polishing is very costly and extremely time consuming. Ductile mode cutting is a very promising way to achieve high quality and crack-free surfaces of brittle materials. Thus the study of ductile mode cutting of brittle materials has been attracting more and more efforts. This paper provides an overview of ductile mode cutting of brittle materials including ductile nature and plasticity of brittle materials, cutting mechanism, cutting characteristics, molecular dynamic simulation, critical undeformed chip thickness, brittle-ductile transition, subsurface damage, as well as a detailed discussion of ductile mode cutting enhancement. It is believed that ductile mode cutting of brittle materials could be achieved when both crack-free and no subsurface damage are obtained simultaneously.  相似文献   

12.
概述了具有光滑表面的硬脆材料的应用前景,介绍了国内外在硬脆材料超光滑表面精密磨削技术上的发展现状,提出了获得硬脆材料超光滑磨削表面的主要技术措施,并从国情实际情况出发,提出了我国在超精密磨削技术方面今后应开展的研究工作。  相似文献   

13.
氮化硅陶瓷球研磨去除机制试验与仿真研究   总被引:1,自引:0,他引:1  
为研究研磨过程中氮化硅陶瓷球的材料去除形式及磨损行为,结合陶瓷材料动态压痕断裂力学理论,进行陶瓷球研磨加工试验,采用超景深三维显微镜和扫描电镜对研磨后陶瓷球表面进行观察,同时建立单颗金刚石磨粒冲击作用有限元模型并进行仿真研究。试验结果表明:氮化硅陶瓷球表面材料去除以脆性断裂去除和粉末化去除为主,陶瓷球表面残留有大量贝壳状缺陷和呈簇状随机分布的粉末化材料区域;研磨过程中,陶瓷球表面存在擦伤、划伤和凹坑等缺陷;磨粒冲击作用时,表面材料会受微切削作用产生破碎去除,同时也会受挤压作用产生脆性断裂去除,当磨粒以滚动方式作用在陶瓷球表面时,陶瓷球表面更容易形成粉末化去除,且材料去除率更高。仿真结果表明:各磨粒冲击作用方式产生的最大等效应力由大到小的顺序为滚动磨粒变切深、滚动磨粒定切深、磨粒挤压、滑动磨粒定切深,其中,滚动磨粒变切深产生的亚表面裂纹最深。  相似文献   

14.
Basic design principles for ultraprecision equipment are outlined. The parameters of the basic components are considered, and machining technology for brittle optical materials is described.  相似文献   

15.
A method of ultraprecision abrasion machining named “Nano-abrasion machining” is proposed for optical finishing of brittle materials. The fundamental characteristics and its applicability for corrective figuring to improve form accuracy of optics of brittle materials are investigated. It is experimentally ascertained that the material removal rate and surface roughness are suitable for optical finishing. However, the cross-sectional profile of the machined spot that is dependent on the collision angle is a combination of V- and W-shape, which is unsuitable for the corrective figuring. Therefore, circular motion machining is introduced and a preferable profile with an axis-symmetric V-shape is realized. The machining method is applied to corrective figuring of optical glass of BK7. The NC program is generated with a computer program developed by modifying the scanning motion and the form accuracy is predicted. According to the simulation results, corrective figuring is performed. The flatness is improved from PV = 151 to 29 nm. From the experimental results, it is clarified that the nano-abrasion machining is applicable to corrective figuring of brittle materials.  相似文献   

16.
In recent years, grinding techniques for precision machining of brittle materials used in dies, moulds and optical parts have been improved by using superabrasive wheels and precision grinding machines. Optimum dressing using a superabrasive wheel makes possible the effective ultraprecision grinding of die steel (STD-11). In this study, a new system and the grinding mechanism for optimum in-process electrolytic dressing are proposed. This method can carry out optimum in-process electrolytic dressing of a superabrasive wheel. Optimum in-process electrolytic dressing is a good method for obtaining efficiency and ultraprecision grinding of STD-11.  相似文献   

17.
光学硬脆材料固结磨料研磨中的亚表面损伤预测   总被引:2,自引:0,他引:2  
研磨过程中亚表面损伤层深度的正确预测是研磨工艺参数制定的重要依据。针对固结磨料的研磨特点,选择两种典型光学硬脆材料(镁铝尖晶石和石英玻璃),采用离散元仿真技术,分别建立了两种材料的二维离散元模型,分析了工艺参数对光学硬脆材料亚表面损伤(裂纹)层深度的影响。而后,采用角度抛光法测量了镁铝尖晶石和石英玻璃的亚表面损伤层深度,进行了实验验证。结果表明:采用固结磨料研磨时,磨粒粒径对光学硬脆材料亚表面损伤的影响相当显著,在相同研磨工艺条件下,随着磨粒粒径的增大,亚表面损伤层深度和微裂纹密集程度明显增加。离散元仿真结果与实验结果的对比表明:采用离散元技术可以对光学硬脆材料的亚表面损伤深度进行快速有效的预测,从而为后续的研磨抛光工艺提供参考与指导。  相似文献   

18.
Recently, mirror-surface machining of brittle materials such as ferrite, glass, and optical plastics has become more important, as these materials are used in optical communications and precision devices. Non-ferrous metals such as aluminium and copper were readily turned with diamond tools, but as the need for both infra-red and reflective optics escalated, the need to machine brittle materials arose. In this paper, ultrasonic vibration cutting at 20 kHz at extremely low cutting velocity for the precision machining of brittle plastics used for optical lenses is suggested and tested. The mechanism of chip generation, and characteristics of surfaces in the ductile mode, machined by ultrasonic vibration cutting are investigated. As a result, when micro cutting by ultrasonic vibration, it was confirmed that the chips generated by ductile mode cutting are obtained at 1/40 of the critical cutting velocity of the ultrasonic vibration cutting system, which is an extremely low cutting velocity.  相似文献   

19.
光纤端面研磨加工机理研究   总被引:8,自引:2,他引:6  
给出了研磨光纤时的材料去除机理,选用粒度为微米及亚微米级的金刚石磨料砂纸,在研磨压力为0.48Mpa时,在KE-OFP-12型光纤连接器研磨机上对光纤端面进行了研磨实验.结果表明:光纤研磨加工的材料去除存在脆性断裂、半脆性半延性、延性等3种模式.材料去除模式主要取决于磨料的平均粒度,磨料粒度为3μm时,为脆性断裂到延性研磨的临界转换点.并从理论上对结果进行了分析,光纤以延性模式研磨加工时,光纤表面粗糙度Ra可达到纳米级,其表面看不到任何划痕,而光纤以脆性断裂模式研磨加工时,其表面粗糙度只能达到亚微米级,证明材料以延性模式去除是提高光纤表面质量的有效方法.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号