首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
利用扫描电镜(SEM)并配合能谱(EDS)、XRD研究了超高压凝固下Mg-6Zn-1Y合金晶体形貌和凝固组织。结果表明:GPa超高压下凝固,随着凝固压力的增大,α-Mg晶体形态由1.03×0-9 GPa(常压)下的树枝晶→细树枝晶→柱状树枝晶→粒状“胞晶”的转变,固/液界面趋于稳定。1.03×10-9 GPa下实验合金的凝固组织由α-Mg相、I-Mg3Zn6Y和S-Mg43Zn4Y3相3相组成,2~6 GPa下实验合金的凝固组织由α-Mg、I-Mg3Zn6Y和S-Mg43Zn4Y3相和高Y含量的Mg-Zn-Y三元相4相组成  相似文献   

2.
采用FactSage热力学软件和镁基数据库计算了Mg-6Zn-1Y合金的凝固路径。利用SEM并配合EDS,XRD,DSC研究了超高压下Mg-6Zn-1Y合金的凝固过程和准晶形成。结果表明:常压下该合金凝固组织主要由粗大α-Mg枝晶和分布在枝晶间含准晶I-Mg3YZn6相的层片状组织等组成,合金凝固过程的实验分析与热力学计算结果吻合较好。Mg-6Zn-1Y合金在GPa级超高压下凝固不但可以获得超细的枝晶组织,还可改善枝晶间层片状组织的形态。随着凝固压力的增加,由常压下的晶间网状或带状逐渐过渡到超高压下的"长岛状"以及"粒状"。特别是提高了单位面积上晶间相(含准晶I-Mg3YZn6相)的含量,其体积分数约占40%,同时还形成了纳米级的弥散分布在基体上高Y含量的Mg-Zn-Y三元新相。  相似文献   

3.
研究了退火处理对热挤压Mg-5 mass%Zn-1 mass%Y合金组织及性能的影响。结果表明,425℃/15 min为该合金的最佳退火工艺,完全再结晶同时避免晶粒长大,所获得晶粒尺寸仅为10μm。该条件下退火合金的抗拉强度为284.8 MPa,断后伸长率高达31.2%,较高的强度与细小再结晶晶粒及弥散分布的第二相有关;较高伸长率主要源于拉伸过程中{1012}拉伸孪生、{1011}压缩孪生以及({1012}-{1011})拉压二次孪生引起的协调变形。  相似文献   

4.
采用单辊快速凝固方法制备了Mg-4.8Zn-0.6Y合金薄带,利用SEM、TEM、XRD、EDX及DTA,研究了合金的显微组织、相组成、偏析及凝固特征。结果表明,快速凝固制备的Mg-4.8Zn-0.6Y合金由过饱和的α-Mg固溶体、准晶I(Mg3YZn6)和X(Mg12YZn)相组成,自由表面晶粒为1~3μm的细小等轴晶。凝固过程的冷却速度为4.60×106~1.04×107 K·s-1,满足准晶相析出所需的冷却条件。沿薄带厚度截面Mg、Zn和Y的分布比较均匀,仅存在少量偏析,晶内也存在微观偏析。偏析是由于从辊面到自由面凝固速度的差异及溶质传输和晶格结构造成的,其中Zn元素偏析最大,Y次之,Mg最小。  相似文献   

5.
通过铸造和300℃热加压制备细晶Mg-6Zn-4Y合金,利用XRD、OM、SEM和TEM研究合金组织,并测试其室温拉伸性能。结果表明,合金主要由α-Mg和W相两相组成,挤压态合金具有双峰晶粒尺寸分布;细小晶粒为动态再结晶晶粒,平均尺寸为1.2μm;粗大晶粒(占面积分数的23%)为未再结晶区域,并沿挤压方向被拉长。合金的极限抗拉强度、屈服强度和伸长率分别为(371±10)MPa,(350±5)MPa和(7±2)%,其工程应力—应变曲线有明显的屈服点。合金高强度归因于晶粒细化和W相、纳米沉淀颗粒及强基面织构的增强作用。  相似文献   

6.
《铸造技术》2019,(12):1332-1336
采用锂盐熔剂保护法熔铸Mg-8Li-4Zn-3Y合金,并对合金进行T4固溶和T6固溶+时效热处理,探讨了热处理对Mg-8Li-4Zn-3Y合金组织及硬度的影响。结果表明,T4固溶后,组织中的强化相减少,α-Mg相晶粒尺寸增大,形貌亦变得不规则,合金的硬度下降;再经过T5时效后,组织中又析出一些强化相颗粒,合金的硬度有一定程度的提高。压缩过程中,Mg-8Li-4Zn-3Y合金试样均呈鼓形后开裂,且均呈45°的剪切断裂。  相似文献   

7.
RE元素Y和Nd对Mg-6Al合金显微组织的影响   总被引:17,自引:0,他引:17  
研究了RE元素Y和Nd元素对Mg-6Al镁合金在铸态和固溶热处理状态下显微组织的影响。金相显微镜、扫描电镜及电子探针分析结果表明,Y和Nd稀土元素均有促进Mg-6Al合金铸态组织晶粒细化的作用,添加质量分数为0.5%的Y元素可使合金的晶粒尺寸由Mg-6Al合金的102.00μm细化至76.92μm,加入质量分数为1%的Nd后合金晶粒尺寸为65.79μm,而且Y和Nd在复合加入时,细化效果更为显著,晶粒尺寸为57.47μm。Y和Nd与合金中的铝元素形成热稳定性较高的块状YAl2相和条状NdAl2相,两者在α-Mg晶粒内和晶界均有分布。  相似文献   

8.
利用光学显微镜、X射线衍射、扫描电镜和差热分析等手段研究添加Ce对Mg-6Zn-1Mn镁合金在不同状态下的微观组织和相组成的影响,并对合金的室温力学性能进行测试和比较。结果表明:添加的Ce元素以Mg12Ce相存在于合金中,主要分布在晶界和枝晶间,铸态晶粒得到细化;添加Ce元素能够明显地提高挤压态Mg-6Zn-1Mn合金的屈服强度和伸长率,这是由于热挤压过程中弥散分布在晶界上的Mg12Ce相能够有效钉扎晶界,抑制再结晶晶粒长大,从而得到更加细小的热变形晶粒组织;然而,添加Ce元素恶化了时效态Mg-6Zn-1Mn合金的力学性能,这是因为热处理不能使这些Mg12Ce相固溶于基体中,在拉伸断裂时Mg12Ce相表面形成微裂纹,导致力学性能下降。  相似文献   

9.
研究了合金元素Sb对Mg-8Al-1Zn-1Si合金组织和性能的影响。结果表明:加入少量(0.2%~0.6%)Sb时,α-Mg基体和粗大的汉字状Mg2Si相颗粒有所细化,力学性能逐渐提高;当Sb达到0.8%时,Mg2Si颗粒全部转变为块状和短棒状,此时室温和150℃下的力学性能都达到最佳;当Sb含量超过0.8%后,合金中的Mg2Si又变为粗大的汉字状,力学性能下降。  相似文献   

10.
通过铸造和300℃热加压制备细晶Mg-6Zn-4Y合金,利用XRD、OM、SEM和TEM研究合金组织,并测试其室温拉伸性能。结果表明,合金主要由α-Mg和W相两相组成,挤压态合金具有双峰晶粒尺寸分布;细小晶粒为动态再结晶晶粒,平均尺寸为1.2μm;粗大晶粒(占面积分数的23%)为未再结晶区域,并沿挤压方向被拉长。合金的极限抗拉强度、屈服强度和伸长率分别为(371±10)MPa,(350±5)MPa和(7±2)%,其工程应力—应变曲线有明显的屈服点。合金高强度归因于晶粒细化和W相、纳米沉淀颗粒及强基面织构的增强作用。  相似文献   

11.
分别利用差热分析、光学显微镜、扫描电子显微镜、能谱仪、X射线衍射仪等仪器对Mg-5.9Zn-1.6Zr-1.6Nd-0.9Y合金在其均匀化过程中,产生的微观组织演变进行了系统性的定性分析。在此基础上,测量了维氏硬度,定量化的分析合金的硬度变化。结果发现,Mg-5.9Zn-1.6Zr-1.6Nd-0.9Y合金的铸态组织由ɑ- Mg和Mg3(Y、Nd)2Zn3构成。合金在均匀化处理之前,拥有510℃的吸热峰,但是此吸热峰在合金在500°C×16小时的均匀化少量Mg3消失(Y、Nd)2Zn3相溶于470℃和490℃。然而,在500℃×16 h均匀化处理后,只有一小部分的富Y和富Nd细颗粒(MG3(Y,Nd)2Zn3)分散在晶界,基本消除了枝晶偏析。因此,最佳化参数为500℃16小时均能有效降低铸Mg-5.9Zn-1.6Zr-1.6Nd-0.9Y合金的硬度从185.2HV升高到144.2 HV。  相似文献   

12.
研究了固溶处理对Mg-6Al-3Zn-0.25Mn铸造镁合金显微组织和力学性能的影响。结果表明,铸态和固溶态组织主要由α-Mg基体和Mg17Al12相组成,经过400、410和420℃保温18 h固溶处理后,第二相的种类没有发生变化,大量的Mg17Al12相溶入到α-Mg基体中,合金组织中残留了少量颗粒状Al4Mn相,同时也出现了梅花状Mg17Al12相。此外,合金经400℃×18 h处理后,晶粒细化程度最好,且表面清晰平整无缺陷,其室温力学性能得到了明显改善,抗拉强度、屈服强度和伸长率分别达到了184.1 MPa、135.5 MPa和8.9%。  相似文献   

13.
Mg-6Zn-1Y-Zr镁合金在热锻或热挤压过程中发生了动态再结晶.合金组织细化,但不均匀,平均晶粒尺寸约10 μm.挤压态材料经350℃×30 min再结晶退火转变为等轴细晶组织,平均晶粒尺寸已达到5μm左右.合金在变形处理后有新的第二相析出,且合金的力学性能有很大提高.其中锻态Mg-6Zn-1Y-Zr合金的σb达到265 MPa,σ0.2达155 MPa,挤压态合金的σb达到330 MPa,σ0.2达185MPa.  相似文献   

14.
研究了合金元素Sb对Mg-4Al-1Zn-1Si合金组织和性能的影响.结果表明:加入0.25wt%Sb时,合金中形成了Mg3Sb2相,原来大量聚集于晶界的粗大汉字状Mg2Si相颗粒转变为相对细小的汉字状Mg2Si相颗粒,呈弥散分布于晶界及晶内,同时出现了少量多边形块状Mg2Si相颗粒,此时合金的力学性能有所提高;当Sb为0.5%时,Mg2Si相颗粒尺寸迅速减小,转变为球状或短棒状,此时,合金的室温和高温抗拉强度、屈服强度和伸长率均达到最大值;当Sb含量为0.75%时,Mg2Si相颗粒尺寸未见明显变化,但又发生聚集现象;当Sb含量为1.0%时,Mg2Si相颗粒又转变为尺寸较大的汉字状颗粒,此时合金的力学性能发生下降.  相似文献   

15.
16.
采用快速凝固技术制备Mg-5Zn-1Y-0.6Zr合金,用XRD、SEM、HRTEM、显微硬度测量等分析方法研究其凝固组织和性能.结果表明,合金由α-Mg固溶体、晶界处不连续分布的I(Mg3Zn6Y)准晶相和非晶相组成.根据热传导理论,采用一维傅立叶热传导方程计算了合金的冷却速度.冷却速度的提高使得晶粒细化、成分均匀、非晶相含量增多.硬度(HV)随冷速的提高显著增大,最大值为167.23,是普通凝固合金的2.2倍.  相似文献   

17.
用光学显微镜、扫描电子显微镜、X 射线衍射分析、差热分析等方法,研究了金属型铸造Mg-10Zn-2Al合金的凝固行为及铸态组织特征,并结合差热分析结果和Mg-Zn-Al三元液相投影图,阐明了合金凝固过程中的相变反应.结果表明,合金铸态组织由α-Mg相、Mg32(Al,Zn)49相和MgZn相组成,Mg32(Al,Zn)49相结晶形貌呈连续/半连续网状骨骼形态,均匀分布在晶界以及枝晶间;合金的液相线温度为609.4℃,固相线温度为300.0℃,凝固温度范围为309.4℃,第二相转变在300.0~332.2℃温度范围内进行.  相似文献   

18.
研究了Mg-8Zn-2Si-0.5Ca合金及其热处理后的组织和性能。结果表明:铸态下合金由α-Mg相、MgZn相、Mg2Si相和CaSi。相组成。Mg2Si的形状为块状,颗粒较细小.Mg2Si的晶核为CaSi2相。固溶处理后.合金中原来呈骨骼状分布的MgZn相明显减少,并变得细小。固溶处理未能使Mg2Si相溶入基体组织中。时效处理后固溶到基体中的MgZn相以细小的弥散相析出。经固溶和时效处理后,合金的硬度明显提高。  相似文献   

19.
利用单辊甩带技术制备快速凝固Mg-6Zn-1Y-1Ce薄带,并利用透射电子显微镜和能谱仪分析薄带组织。结果表明:薄带近辊面区域晶粒内部和晶界处分布着高密度颗粒,颗粒密度在中间区域和自由面区域有所降低;快速凝固合金主要由过饱和的--Mg固溶体、T相和W相组成,同时还存在少量的二十面体准晶相颗粒和Mg4Zn7相颗粒;其中T相为体心正交晶体结构,是由于体心正方结构的Mg12Ce相中部分Mg原子被Zn原子代替而形成的。  相似文献   

20.
通过光学显微镜(OM),X 射线衍射(XRD),扫描电子显微镜(SEM),电子背散射衍射(EBSD)以及拉伸试验对360和420℃挤压的Mg-6Zn-1Mn-4Sn-0.5Y变形镁合金的组织和性能进行了研究。研究结果表明,合金铸态和时效态的相组成为α-Mg, Mn, Mg7Zn3, Mg2Sn, 和 MgSnY相。挤压温度从360℃增加到420℃,动态再结晶完成,晶粒长大,合金的屈服强度,抗拉强度以及延伸率分别由259MPa, 350MPa 和 18.3% 降低至 239MPa, 332MPa和12.5%。理论计算和拉伸试验结果表明,细晶强化和固溶强化对合金屈服强度的增加产生决定性影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号