首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
甲醇在CeO2担载Pd催化剂上分解机理的研究   总被引:9,自引:0,他引:9  
采用原位红外(in-situFTIR)技术对甲醇在CeO2和Pd/CeO2催化剂上的吸附和反应进行了研究,提出一个新的甲醇分解反应机理模型.甲醇在CeO2上容易吸附并结合其晶格氧生成甲酸盐物种,而甲醇分解的产物氢被Pd活化后,溢流到CeO2上促进了甲酸盐物种的分解.Cl-的存在加强了Pd/CeO2催化剂与氢的相互作用,Pd和CeO2通过对氢和氧物种的作用对甲醇分解反应的过程表现出协同效应.  相似文献   

2.
采用共沉淀法制备了Cu/SiO2催化剂,在固定床反应器上评价其糠醛气相催化加氢制备糠醇的反应性能,并采用XRD、H2-TPR、ICP-OES、XPS、TG、Raman、TEM等手段对使用后的Cu/SiO2催化剂进行表征,研究其在反应中的失活机理。在常压、反应温度140℃、质量空速2.4 h-1、氢醛比9.7的条件下,反应5 h内糠醛转化率均高于97%;反应6-21 h,糠醛转化率从96%快速下降到32%,说明Cu/SiO2催化剂在糠醛加氢反应中快速失活,失活的主要原因是活性组分铜的团聚烧结和催化剂表面上积炭覆盖了反应活性位。  相似文献   

3.
采用共沉淀法制备了CuO/ZnO/CeO2/ZrO2甲醇水蒸气重整催化剂,探讨了陈化时间对催化剂性能的影响.结果发现,延长陈化时间能增加催化剂的表面铜原子数和改善催化剂的还原性能,但与此同时也降低了催化剂的储放氧性能.延长陈化时间,CuO/ZnO/CeO2/ZrO2催化剂的氢产率随表面铜原子数的增加而成线性增长.另一方面,重整尾气中的CO含量也随着储放氧能力的下降而增加.综合考虑产氢率和重整尾气中CO含量,最佳陈化时间为2h,此时,CuO/ZnO/CeO2/ZrO2催化剂表现出了最佳性能.  相似文献   

4.
研究了共沉淀法制备的系列金属负载型催化剂合成气制甲醇反应性能,重点考察了催化剂上合成甲醇反应体系的耐硫性能。结果表明,Cu/ZnO催化剂显示了较好的甲醇合成反应性能,但该反应在含硫气氛下迅速失活;Pd/CeO2催化剂体现了良好的甲醇合成反应性能和该反应体系的高耐硫性能。结合多种物理化学表征手段分析得出, Cu/ZnO催化剂在含硫气氛下因活性组分形成金属硫化物而失活;Pd/CeO2催化剂中的载体CeO2可优先与硫作用而保护金属活性组分,进而保持了Pd/CeO2反应体系的高抗硫性能。  相似文献   

5.
采用等体积浸渍法和共沉淀法制备了Ni催化剂,在固定床反应器上考察了Ni负载量、焙烧温度、反应温度等因素对乙二醇低温重整制氢反应活性和选择性的影响。应用X射线衍射、氮物理吸附、H2程序升温还原等技术对负载型Ni催化剂进行了表征。结果表明,共沉淀法制备的Ni/CeO2催化剂具有较小的NiO颗粒与CeO2载体颗粒粒径,催化活性较高。添加少量氧化钴到Ni/CeO2催化剂中可使H2收率达72.6%,EG转化率达93.1%。在CeO2中添加Al2O3能提高负载Ni催化剂的活性,乙二醇转化率达94.0%,H2收率达67.0%;但添加SiO2则使其活性明显变差。  相似文献   

6.
采用溶胶凝胶法制备了CeO2-ZrO2固溶体载体涂层, 再经浸渍法制备了高空速下性能较好的甲醇水蒸气重整制氢xCuO/CeO2-ZrO2/SiC整体催化剂. 采用X射线衍射(XRD)、比表面积测试(BET)、H2程序升温还原(H2-TPR)和X射线光电子能谱(XPS)等手段对催化剂进行了表征, 结果表明, 催化剂活性主要与Cu比表面积、活性组分与载体之间相互作用以及氧空穴量有关. 其中5%CuO/CeO2-ZrO2/SiC整体催化剂的Cu比表面积较大, 活性组分CuO与CeO2-ZrO2固溶体氧化物之间相互作用较强, 氧空穴量较多, 因此表现出较好的催化性能. 在反应温度为360 ℃、水醇物质的量比为1.2、甲醇水蒸气气体空速为4840 h–1的条件下, 甲醇转化率为89.9%, 产氢速率为1556 L•m–3•s–1. 与传统颗粒催化剂相比, SiC基整体催化剂的产氢速率更高, 更适用于高空速下的甲醇水蒸气重整制氢反应, 有利于小型化制氢反应器的集成.  相似文献   

7.
以溶胶固定法制备了Au-Pd/SiO2催化剂,考察了催化剂焙烧温度对甲醇选择氧化制甲酸甲酯反应性能的影响。在200~500℃,400℃焙烧的Au-Pd/SiO2具有最好的低温催化性能,在室温下就有活性,反应温度为100℃时甲醇转化率为25.3%,甲酸甲酯的选择性为100%。采用BET、XRD、UV-vis DRS、XPS、TEM和DRIFTS技术对催化剂进行表征,结果表明,催化剂中活性组分Au和Pd的高分散性,合适的Au和Pd粒径,Au-Pd合金的形成以及Au和Pd之间的强相互作用力,有利于甲醇氧化为甲酸甲酯反应的进行。初步推测出了甲醇在Au-Pd/SiO2上氧化为甲酸甲酯的反应机理,甲醇在Au-Pd/SiO2催化剂上是通过甲氧基中间体得到甲酸甲酯的。  相似文献   

8.
Pt/Al2O3和Pt/CeO2/Al2O3催化甲烷部分氧化制合成气反应   总被引:12,自引:0,他引:12  
研究了Pt/Al2O3和Pt/CeO2/Al2O3对甲烷部分氧化制合成气反应的催化活性,发现Pt/CeO2/Al2O3显示了更高的甲烷转化率和合成气选择性.用H2-TPR、H2-TPD、SEM-EDX和XRD等技术对催化剂进行了表征.CeO2和Pt相互作用促进Pt在催化剂表面的分散,抑制Pt在催化剂表面的迁移;降低了催化剂的燃烧活性,提高了催化剂的部分氧化活性和选择性,可避免因催化剂床层局部温度过高而导致催化剂活性下降或失活,提高了催化剂的稳定性.同时,CeO2通过促进水汽变换反应使反应体系迅速达到平衡,提高了催化剂对H2的选择性.  相似文献   

9.
采用沉淀法和浸渍法制备了具有氧空位的CeO2纳米材料和甲醇水蒸气重整制氢CuO/CeO2催化剂,探索不同焙烧气氛对CeO2纳米材料结构、性质和甲醇水蒸气重整制氢性能的影响。采用SEM、XRD、BET、H2-TPR、N2O滴定和XPS等手段对催化剂进行了表征。结果表明,CuO/CeO2催化剂的催化活性与催化剂的Cu比表面积大小、Cu-Ce的相互作用强弱、表面缺陷和表面氧空位的多少有关。其中,在氢气气氛下焙烧所得的CeO2负载CuO后的CuO/CeO2-H催化剂催化活性最佳。在反应温度为250℃,水醇物质的量比为1.2时,甲醇气体空速为800 h-1,甲醇转化率达到了100%,重整尾气中CO含量为0.87%。  相似文献   

10.
通过改变水热法条件合成了不同形貌CeO2载体(棒状CeO2-R、立方体CeO2-C和多面体CeO2-P),并用浸渍法制备了Ni3Fe/CeO2催化剂,继而研究了不同载体形貌Ni3Fe/CeO2催化剂对其甲烷干重整反应性能的影响。采用X射线衍射、N2吸附-脱附、透射电镜、拉曼光谱、X射线光电子能谱、热重等对反应前后催化剂结构进行表征。结果表明,Ni3Fe/CeO2-R具有较大比表面积和较高的氧空位浓度,在甲烷干重整反应中表现出了优异的催化反应活性。800℃时,CH4和CO2的转化率分别为82%和91%,且反应10 h性能稳定并且其积炭石墨化程度较低。同时,通过CeO2-R载体氧空位对CO2活化,有效抑制了对亲氧性Fe物种的过度氧化行为,反应前后催化剂Ni...  相似文献   

11.
SARS冠状病毒E蛋白的结构研究及功能预测   总被引:3,自引:0,他引:3  
结合生物信息学方法及分子模拟手段,选择较高准确度的方法,预测了SARSE蛋白的分子结构并探讨其潜在的生物学活性和功能.研究结果表明,SARSE蛋白跨膜区25个疏水的氨基酸形成α-螺旋结构,包埋于病毒外壳磷脂双分子层中;N端10个氨基酸残基位于膜外;C端41个残基则附着于磷脂双分子膜内侧.同时发现,C端由9个氨基酸组成的劈裂是一个可能的活性部位.对分子进行进一步静电势分析证实,E蛋白C端可能的活性部位具有较大的静电势,可能的活性残基具有最大电荷密度,故有较强的结合受体或与其它蛋白相互作用的能力.  相似文献   

12.
采用蒸氨法制备Cu/SiO2催化剂,分别考察气相二氧化硅(SiO2-aer)、硅胶(SiO2-gel)和碱性硅溶胶(SiO2-sol)对Cu/SiO2催化剂催化甲醇裂解制氢性能的影响,并采用N2吸附-脱附、N2O化学吸附、电感耦合等离子体原子发射光谱法(ICP-AES)、X射线衍射(XRD)、H2程序升温还原(H2-TPR)、透射电子显微镜(TEM)和X射线光电子能谱(XPS)等方法对催化剂进行表征。结果表明,硅源对Cu/SiO2催化剂的活性具有较大影响。以碱性硅溶胶作为硅源制得的Cu/SiO2-sol催化剂比表面积较大,活性中心粒径较小且分散均匀,这些使得其制氢性能优于其他两种硅源为载体所制备的催化剂。在反应温度280 ℃,反应压力1 MPa,甲醇质量空速0.6 h-1的条件下,相较于Cu/SiO2-aer和Cu/SiO2-gel催化剂,Cu/SiO2-sol催化剂的甲醇转化率分别提高10%和7%,气相副产物CH4和CO2浓度也有所降低,该催化剂上的甲醇转化率和气体收率分别达到98.4%和96.7%。  相似文献   

13.
采用溶胶-凝胶法制备了SiO2-ZrO2复合氧化物载体,通过和CuCl2进行离子交换制备了Cu+/SiO2-ZrO2催化剂,并研究其催化甲醇液相氧化羰基化合成碳酸二甲酯性能。结果表明,Zr以离子形式进入无定型SiO2骨架结构中形成Si-O-Zr键,同时产生较强的B酸中心。CuCl2通过热处理自还原为CuCl分散在SiO2-ZrO2载体表面,并与载体表面B酸发生离子交换形成Cu+物种,从而保留了活性金属组分Cu,脱除大部分的Cl元素,改善催化剂失活和设备腐蚀等问题。当焙烧温度为450℃时,催化剂表现出良好的催化活性,CH3OH转化率、DMC选择性和时空收率分别达到10.0%、79.4%和1.45g/(g·h)。
  相似文献   

14.
Micron-sized silica gel particles were chemically modified on their surfaces with the coupling agent, γ-methacryloxypropyl trimethoxysilane (MPS), double bond was introduced onto the surfaces of silica gel particles, and the modified particles MPS–SiO2 were obtained. Then, poly(4-vinylpyridine) (P4VP) was grafted from the silica gel surfaces, and grafting particles P4VP/SiO2 was prepared. Finally, the coordination between grafted P4VP and cupric ions Cu2+ was performed, and the supported complex Cu(II)–P4VP/SiO2 was obtained. The grafting particles P4VP/SiO2 and the supported complex Cu(II)–P4VP/SiO2 were characterized with infrared spectra (FTIR), thermogravimetric analysis (TGA) and scanning electron microscopy (SEM). Cu(II)–P4VP/SiO2 was used as a catalyst for the oxidation of ethyl benzene into acetophenone with molecular oxygen under ordinary pressure. The experimental results show that the supported complex Cu(II)–P4VP/SiO2 can be successfully prepared via grafting polymerization of 4VP and coordination between the grafted P4VP and cupric ions Cu2+. In oxidation of ethyl benzene into acetophenone by molecular oxygen under ordinary pressure, the supported complex Cu(II)–P4VP/SiO2 displayed high catalytic activity and excellent catalytic selectivity up to more than 98% for the transformation of ethyl benzene to acetophenone.  相似文献   

15.
以十二磷钨杂多酸(Tungstophosphoric acid,H_3PW_(12)O_(40))为基体,分别通过普通浸渍法、溶胶凝胶法和超声浸渍法进行了La3+改性作用,合成了三种固体酸催化剂A-LaPW_(12)O_(40)、B-LaPW_(12)O_(40)/Si O2和C-LaPW_(12)O_(40)。采用X射线荧光光谱(XRF)、孔径比表面积测定、X射线粉末衍射(XRD)、透射电镜(TEM)、红外光谱(FT-IR)、热重(TG)、N2吸附-脱附、NH3程序升温脱附(NH3-TPD)、吡啶吸附红外光谱(Py-FTIR)、X射线光电子能谱(XPS)等方法对合成的催化剂进行了表征,并比较了以上催化剂在用于催化以油酸和甲醇为反应物经酯化反应合成生物柴油时的活性和稳定性。结果表明,B-LaPW_(12)O_(40)/Si O2具有最高催化活性,当甲醇与油酸的物质的量比为8∶1,催化剂用量为反应物总质量的2%,反应温度为65℃,反应1 h后,油酸的转化率即高达93%。循环使用B-LaPW_(12)O_(40)/Si O2催化剂六次后,油酸的转化率仍高达86.4%。B-LaPW_(12)O_(40)/Si O2的高催化活性和稳定性可归因于在溶胶凝胶的转化过程中,作为硅源材料的四乙氧基硅(TEOS)易在酸性条件下发生水解反应形成Si O2网络,进而Si O2网络中的硅醇键与H_3PW_(12)O_(40)中的H+发生配位作用,生成具有强静电吸附力的(≡Si-OH2+)(H2PW12O-40)络合物。随着该络合物的形成,促进了La3+在Si O2表面的吸附而堵塞了H_3PW_(12)O_(40)的孔道结构,抑制了H_3PW_(12)O_(40)颗粒在焙烧过程中进一步聚集长大。Si O2将作为载体并以干凝胶状态存在于B-LaPW_(12)O_(40)/Si O2催化剂中,由于Si O2凝胶的高比表面积而使B-LaPW_(12)O_(40)/Si O2具有了较大的比表面积,从H_3PW_(12)O_(40)的1.4 m2/g增加至31.3 m2/g。并且,通过吡啶吸附红外光谱确定B-LaPW_(12)O_(40)/Si O2为Br9nsted-Lewis酸型固体酸,由于Br9nsted酸位易与酯化反应过程中生成的水发生水合反应而失活,因而Lewis酸位的形成有助于减少催化剂的失活现象发生。Lewis酸位的出现可归因于(≡Si-OH2+)(H2PW12O-40)与吸附在其表面的具有强吸电子作用的La3+发生键合作用后生成了LaPW_(12)O_(40)/Si O2。  相似文献   

16.
甲醇选择氧化制备甲酸甲酯(MF)是延伸甲醇产业链、开发高附加值下游产品的有效途径之一,负载型Au及Pd催化剂在这一反应中表现出优异的低温催化性能。为探索实用、高效和易再生的甲醇选择氧化催化剂,同时揭示双金属颗粒中Au和Pd的协同效应及甲醇氧化反应机理,本研究制备了一系列二氧化硅负载的Au-Pd催化剂(Au-Pd/SiO2),详细研究了其对甲醇选择氧化制甲酸甲酯的催化性能。结果表明,Au和Pd总负载量为0.6%、且Au/Pd质量比为2时,所制备的Au2-Pd1/SiO2催化剂表现出优异的甲醇氧化催化性能;在130℃下,甲醇转化率达到57.0%,MF选择性为72.7%。多种表征结果显示,Au-Pd双金属纳米颗粒粒径为2-4 nm,高度分散于SiO2载体表面,倾向于生成孪晶结构并暴露(111)晶面,这些因素是Au-Pd/SiO2具有优异催化性能的主要原因。通过DRIFTS表征研究,提出了一个可能的MF生成机理:即甲醇首先与处于Au-Pd纳米粒子界面的表面氧作用,生成化学吸附的甲氧基;随后,甲氧基经去质子作用生成吸附的甲醛物种,后者与相邻的甲氧基物种亲核反应,并经β-H消除后得到目标产物MF。  相似文献   

17.
Palladium, silver and palladium–silver catalysts supported on silica were prepared by coimpregnation of support with solution of AgNO3 and Pd(NO3)2. The catalysts were characterized by X-ray powder diffraction (XRD), temperature programmed reduction (TPR), time of flight ion mass spectrometry (ToF-SIMS), chemisorption of carbon monoxide and were tested in the reaction of selective oxidation of glucose to gluconic acid.

XRD and TPR studies have shown that an interaction between Pd and Ag on the surface of silica after oxidation at 500 °C and reduction at 260 °C leads to the formation of solid solutions.

ToF-SIMS images of the surface of 5% Ag/SiO2 catalyst after oxidation at 500 °C and reduction at 260 °C show that Ag atoms supported on silica are not distributed homogenously but tend to form regions of enhanced Ag concentration. Positive ions images of the surface of 5% Pd/SiO2 catalyst also display regions of enhanced concentration of Pd atoms, but they are more homogenously distributed on silica.

ToF-SIMS peak intensity ratio 108Pd+/107Ag+ for bimetallic 5% Pd–5% Ag/SiO2 catalysts has a lower value than that obtained for physical mixture 5% Pd/SiO2–5% Ag/SiO2 which indicates that the surface of bimetallic catalyst is enriched with silver atoms.  相似文献   


18.
采用蒸氨法制备的xGa-Cu/SiO_2催化剂可以同时产生Cu~0和Cu~+物种,加入Ga后催化剂的二甲醚水蒸气重整反应活性和选择性都有很大程度的提高,其中5Ga-Cu/SiO_2催化剂在380°C时的二甲醚转化率为99.8%,CO选择性为4.8%。通过透射电子显微镜(TEM),氢气-程序升温还原(H_2-TPR),N_2O滴定和X射线光电子能谱(XPS)结果发现,Ga与Cu物种之间的相互作用,一方面可以提高Cu物种的分散度,另一方面可以促进Cu~+的形成。通过改变Ga负载量可以调变Cu~+/(Cu~0+Cu~+)的比例,氢气的时空收率结果表明,Ga通过调变Cu~+/(Cu~0+Cu~+)影响催化活性,并且当Cu~+/(Cu~0+Cu~+)=0.5时,氢气时空收率达到最大值为5.02mol·g~(-1)·h~(-1)。程序升温表面反应(TPSR)结果表明,Ga通过促进水气变换反应提高反应产物CO_2选择性。  相似文献   

19.
Cu-ZnO is broadly used as a catalyst in CO2 reduction to produce methanol, but fabricating small-sized Cu-ZnO catalysts with strong Cu-ZnO interactions remains a challenge. In this work, a simple, low-cost method is proposed to synthesize small-sized Cu-ZnO/SiO2 with high activity and controllable Cu-ZnO interactions derived from copper silicate nanotubes. A series of Cu-ZnO/SiO2 samples with different amounts of ZnO were prepared. The activities of the as-prepared catalysts for methanol synthesis were tested, and the results revealed a volcano relationship with the weight fraction of ZnO. At 523 K, the methanol selectivity increased from 20% to 67% when 14% ZnO was added to the Cu/SiO2 catalyst, while the conversion of CO2 increased first and then decreased with the addition of ZnO. The optimum space time yield (STY) of 244 g·kg-1·h-1 was obtained on C-SiO2-7%ZnO at 543 K under 4.5 MPa H2/CO2. Furthermore, the synergistic effect of Cu and ZnO was studied by high resolution transmission electron microscopy (HRTEM), powder X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), in situ diffuse-reflectance infrared Fourier transform spectroscopy (DRIFTS), and temperature-programmed reduction (TPR) analyses. The HRTEM images showed that the Cu particles come in contact with ZnO more frequently with increased addition of ZnO, indicating that the catalysts with higher ZnO contents have a greater probability of formation of the Cu-ZnO interface, which promotes the catalytical activity of Cu-ZnO/SiO2. Meanwhile, the HRTEM images, XRD patterns, and TPR results showed that the addition of excess ZnO leads to an increase in the size of the Cu particles, which in turn decreases the total number of active sites and further degrades the activity of the catalysts. The activation energy (Ea) for methanol synthesis and reverse water gas shift (RWGS) was calculated based on the results of the catalytical test. With the addition of ZnO, Ea for methanol synthesis decreased from 72.5 to 34.8 kJ·mol-1, while that for RWGS increased from 61.3 to 102.7 kJ·mol-1, illustrating that ZnO promotes the synergistic effect of Cu-ZnO. The results of XPS and in situ DRIFTS showed that the amount of Cu+ species decreases with the addition of ZnO, indicating that the Cu-ZnO interface serves as the active site. The Cu surface area and the turnover frequency (TOF) of methanol were calculated based on the H2-TPR curves. The TOF of methanol on the Cu-ZnO/SiO2 catalysts at 543 K increased from 1.5 × 10-3 to 3.9 × 10-3 s-1 with the addition of ZnO, which further confirmed the promotion effect of the Cu-ZnO interface on the methanol synthesis. This study provides a method to construct Cu-ZnO interfaces based on copper silicate and to investigate the influence of ZnO on Cu-ZnO/SiO2 catalysts.  相似文献   

20.
考察了二氧化硅负载的不同碱金属硝酸盐催化乳酸缩合制备2, 3-戊二酮的催化性能。在考察的碱金属硝酸盐如硝酸锂、硝酸钠、硝酸钾和硝酸铯作为催化剂的前驱体中,重点关注的是碱金属阳离子对乳酸缩合反应的影响。通过对这些硝酸盐前驱体在反应中的作用研究,发现硝酸铯的催化性能最佳。为了探究影响催化剂性能的原因,对新鲜催化剂和用过的催化剂采用X射线衍射(XRD)、傅里叶变换红外(FT-IR)光谱进行表征,发现所有的硝酸盐在反应过程中快速地转变为乳酸盐,并认为乳酸盐才是催化活性物种。随后,又借助CO2程序升温脱附(CO2-TPD)表征手段对用过的催化剂的碱性进行表征,发现二氧化硅负载的硝酸铯具有最强的碱性。乳酸缩合反应制备2, 3-戊二酮被广泛认为是碱催化反应,因此,二氧化硅负载的硝酸铯展示了最佳的催化性能。此外,本文还讨论了反应温度、硝酸盐的负载量等工艺条件对反应的影响。以4.4%(x,摩尔分数)CsNO3/SiO2为催化剂,在反应温度为300 ℃条件下,2, 3-戊二酮的收率达54.1%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号