首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
多椭圆孔有限大复合材料层板的应力研究   总被引:5,自引:0,他引:5  
基于经典层板理论,将复合材料层板的弹性问题化归为均匀各向异性板求解,采用各向异性体平面弹性理论中的复势方法,以Faber级数、保角映射及最小二乘边界配置技术为工具,提出了多椭圆孔有限大层板在任意外载作用下的级数解,详细探讨了各参数对孔边应力分布的影响规律,得到了许多有益结论。  相似文献   

2.
THERMOELASTICITYANALYSISOFFINITECOMPOSITELAMINATESWEAKENEDBYMULTIPLEELLIPTICALHOLESXuXi-wu(许希武)SunLiang-xin(孙良新)FanXu-qi(范绪箕)...  相似文献   

3.
基于经典的复合材料层板理论,将有限大复合材料层板等效成各向异性弹性平板。采用复变函数理论中的Faber级数分析方法,使用最小二乘边界配点法,对含多椭圆刚性核有限大各向异性板弯曲问题进行应力分析,得到了该问题的级数解形式,分析了含椭圆刚性核层板在弯曲载荷下的应力分布,并讨论了形状和结构参数对应力分布的影响。结果表明,本文方法对于分析含多个椭圆形刚性核有限大薄板弯曲应力问题非常有效,该方法具有精度高及计算方便等优点。  相似文献   

4.
基于各向异性体平面弹性理论中的复势方法,应用杂交变分原理建立了一种与常规有限元相协调的含任意椭圆核各向异性板杂交应力有限元,采用该杂交应力有限元来描述层板的椭圆核区域,采用杆单元来描述加强筋(杆单元的刚度取为层板沿筋条方向的刚度),其余区域采用常规8节点等参单元进行模拟,建立起分析含多椭圆核复合材料加筋壁板问题的力学分析方法,详细讨论了椭圆核大小、位置、筋条尺寸、相对位置、铺层比例等诸参数的影响规律,得到了一些有益的结论。  相似文献   

5.
Based on the classical composite laminate theory,the bending problem of a finite composite plate weakened by multiple elliptical holes is studied by means of the complex variable method.The present work is intended to express the complex potentials in the form of Faber series aided by the use of the least squares boundary collocation techniques on the finite boundaries.As a result,concise and high accuracy solutions are presented for the stress distribution around the holes.Finally,numerical examples are presented to discuss the efects of some parameters on the stress concentration around the holes.  相似文献   

6.
In a recent paper, Cho and Kim [Journal of Applied Mechanics] proposed a higher-order cubic zigzag theory of laminated composites with multiple delaminations. The proposed theory is not only accurate but also efficient because it work with a minimal number of degrees of freedom with the application of interface continuity conditions as well as bounding surface conditions of transverse shear stresses including delaminated interfaces. In this work, we investigate the dynamic behavior of laminated composite plates with multiple delaminations. A four-node finite element based on the efficient higher-order zigzag plate theory of laminated composite plates with multiple delaminations is developed to refine the prediction of frequencies, mode shape, and time response. Through the dynamic version of the variational approach, the dynamic equilibrium equations and variationally consistent boundary conditions are obtained. Natural frequency prediction and time response analysis of a composite plate with multiple delaminations demonstrate the accuracy and efficiency of the present finite element method. To prevent penetration violation at the delamination interfaces, unilateral contact constraints by Lagrange multiplier method are applied in the time response analysis. The present finite element is suitable for the prediction of dynamic response of thick composite plates with multiple and arbitrary shaped delaminations.  相似文献   

7.
A new modified couple stress theory for anisotropic elasticity is proposed. This theory contains three material length scale parameters. Differing from the modified couple stress theory, the couple stress constitutive relationships are introduced for anisotropic elasticity, in which the curvature (rotation gradient) tensor is asymmetric and the couple stress moment tensor is symmetric. However, under isotropic case, this theory can be identical to modified couple stress theory proposed by Yang et al. (Int J Solids Struct 39:2731–2743, 2002). The differences and relations of standard, modified and new modified couple stress theories are given herein. A detailed variational formulation is provided for this theory by using the principle of minimum total potential energy. Based on the new modified couple stress theory, composite laminated Kirchhoff plate models are developed in which new anisotropic constitutive relationships are defined. The First model contains two material length scale parameters, one related to fiber and the other related to matrix. The curvature tensor in this model is asymmetric; however, the couple stress moment tensor is symmetric. Under isotropic case, this theory can be identical to the modified couple stress theory proposed by Yang et al. (Int J Solids Struct 39:2731–2743, 2002). The present model can be viewed as a simplified couple stress theory in engineering mechanics. Moreover, a more simplified model of couple stress theory including only one material length scale parameter for modeling the cross-ply laminated Kirchhoff plate is suggested. Numerical results show that the proposed laminated Kirchhoff plate model can capture the scale effects of microstructures.  相似文献   

8.
本文基于各向异性修正偶应力理论建立了只含一个尺度参数的Reddy型复合材料层合板的自由振动模型。同见诸于文献的细观尺度Kirchhoff薄板偶应力模型相比,本文提出的新模型能够更精确的预测细观尺度下的中、厚层合板的自振频率。基于Hamilton原理推导了细观尺度下Reddy型复合材料层合板的运动微分方程以及边界条件,并以正交铺设的四边简支复合材料层合方板为例进行了解析求解,分析了尺度参数对自振频率的影响并对比了Kirchhoff、Mindlin和Reddy等三种板模型计算结果的异同。算例结果表明本文所给出的模型能够捕捉到复合材料层合板自由振动问题的尺度效应。另外,在细观尺度下Kirchhoff板模型所预测的自振频率相对于Mindlin板模型和Reddy板模型总是过高,且越接近厚板三者的差别就越大,这与经典理论中三种板模型的对比情况是一致的。  相似文献   

9.
A refined non-linear first-order theory of multilayered anisotropic plates undergoing finite deformations is elaborated. The effects of the transverse shear and transverse normal strains, and laminated anisotropic material response are included. On the basis of this theory, a simple and efficient finite element model in conjunction with the total Lagrangian formulation and Newton-Raphson method is developed. The precise representation of large rigid-body motions in the displacement patterns of the proposed plate elements is also considered. This consideration requires the development of the strain-displacement equations of the finite deformation plate theory with regard to their consistency with the arbitrarily large rigid-body motions. The fundamental unknowns consist of six displacements and 11 strains of the face planes of the plate, and 11 stress resultants. The element characteristic arrays are obtained by using the Hu-Washizu mixed variational principle. To demonstrate the accuracy and efficiency of this formulation and compare its performance with other non-linear finite element models reported in the literature, extensive numerical studies are presented.  相似文献   

10.
任意多孔多裂纹有限大板的应力强度因子分析   总被引:3,自引:0,他引:3  
采用各向异性体平面弹性理论中的复势方法,以Faber级数为工具,应用保角映射技术和最小二乘边界配点法,导出内边界条件精确满足,外边界条件近似满足的含多椭圆孔及裂纹群有限大板在任意载荷作用下的应力场、位移场的级数解,建立了任意多椭圆孔及裂纹群有限大板应力强度因子的有效分析方法,讨论了各参数对裂尖应力强度因子及孔边应力集中的影响.数值结果表明,该方法具有计算精度高、收敛速度快、方便快捷等优点,有利于全面系统地研究各参数对结构断裂性能的影响.  相似文献   

11.
刘艮  张伟 《力学学报》2019,51(3):912-921
随着材料科学的发展,越来越多的新型材料应用到了工程实践中.在气流激励的作用下,对于以航空航天工程为背景、采用复合材料的板壳结构的非线性动力学问题仍是动力学领域的研究热点.本文研究了复合材料悬臂板在亚音速气流条件下的非线性振动和响应.根据理想不可压缩流体的流动条件和 Kutta--Joukowski升力定理,基于升力面理论,利用涡格法计算了三维有限长平板机翼上的亚音速气动升力.将亚音速气动力施加到复合材料悬臂板上,利用Hamilton原理,考虑Reddy三阶剪切变形理论并引入冯$\cdot$卡门非线性应变位移关系,建立了有限长平板的非线性动力学微分方程.利用有限元方法考察了不同几何参数下层合板悬臂板的固有特性,通过比较不同材料和几何参数的线性系统的固有频率,得到不同比例的内共振关系.利用Galerkin方法将偏微分方程截断为两自由度非线性常微分方程,在这里考虑了1:2的内部共振关系并利用多尺度法进行了摄动分析.对应多个选取参数,得到了频率响应曲线.结果展示了硬化弹簧型行为和跳跃现象.   相似文献   

12.
基于新的各向异性修正偶应力理论提出一个Mindlin复合材料层合板稳定性模型。该理论包含纤维和基体两个不同的材料长度尺度参数。不同于忽略横向剪切应力的修正偶应力Kirchhoff薄板理论,Mindlin层合板考虑横向剪切变形引入两个转角变量。进一步建立了只含一个材料细观参数的偶应力Mindlin层合板工程理论的稳定性模型。计算了正交铺设简支方板Mindlin层合板的临界载荷。计算结果表明该模型可以用于分析细观尺度层合板稳定性的尺寸效应。  相似文献   

13.
基于带有两个热松弛时间的G-L广义热弹性理论, 利用有限元方法研究了零阻抗理想界面层合板在瞬态热冲击诱导的位移、应力和温度等通过界面时的热弹性行为. 通过比较不同层中材料的比热容、热导系数、热松弛时间和密度等对界面处的位移、应力和温度的影响, 研究了不同材料参数对复合材料热力学行为影响, 发现不同材料参数将导致热穿过界面时界面处温度、位移和应力发生突变, 研究结果可以为由热引起的层合板挠曲变形提供理论依据.   相似文献   

14.
采用各向异性体平面弹性理论中的复势方法,应用保角变换技术,以F aber级数为工具,导出含任意多椭圆孔和裂纹群无限大各向异性板在远场载荷作用下其应力场和位移场的级数解,并在此基础上利用断裂力学方法确定裂纹尖端的应力强度因子,通过算例讨论了材料参数及裂纹、孔的尺寸等对应力强度因子的影响规律,得出了一些有益的结论。数值结果表明本文方法具有计算精度高、收敛速度快、方便快捷等优点,有利于全面系统地研究各参数对结构断裂性能的影响。  相似文献   

15.
The effects of strain rate dependency and inelasticity on the transient responses of composite laminated plates are investigated. A micromechanics model which accounts for the transverse shear stress effect, the effect of strain rate dependency and the effect of inelasticity is used for analyzing the mechanical responses of the fiber and matrix constituents. The accuracy of the micromechanics model under transverse shear loading is verified by comparing the results with those obtained using a general purpose finite element code. A higher order laminated plate theory is extended to capture the inelastic deformations of the composite plate and is implemented using the finite element technique. A complete micro–macro numerical procedure is developed to model the strain rate dependent behavior of inelastic composite laminates by implementing the micromechanics model into the finite element model. Parametric studies of the transient responses of composite plates are conduced. The effects of geometry, ply stacking sequence, material models, boundary conditions and loadings are investigated. The results show that the strain rate dependency and inelasticity influence the transient responses of composite plates via two significantly different mechanisms.  相似文献   

16.
基于新修正偶应力理论建立了一个Reddy型复合材料层合板稳定性模型。该理论中曲率张量不对称,而偶应力矩张量对称。Reddy型层合板模型能够满足横向剪切应力为0的自由表面条件,而且横向剪切为二次函数,避免了常剪力一阶理论需要引入的剪力修正系数。为了便于工程应用,通过虚功原理推导了只含纤维材料尺度参数正交铺设的Reddy型层合板偶应力模型的稳定性方程,并以微尺度正交铺设四边简支层合方板为例,分析了不同铺设角和轴向载荷作用时临界载荷的细观尺度效应,并且与一阶剪切变形和Kirchhoff板理论结果对比。结果表明,本文建立的新修正偶应力Reddy型层合板模型更适合分析较厚的复合材料层合板稳定性的尺度效应。  相似文献   

17.
This paper presents an analysis on the nonlinear dynamics and multi-pulse chaotic motions of a simply-supported symmetric cross-ply composite laminated rectangular thin plate with the parametric and forcing excitations. Firstly, based on the Reddy’s third-order shear deformation plate theory and the model of the von Karman type geometric nonlinearity, the nonlinear governing partial difirential equations of motion for the composite laminated rectangular thin plate are derived by using the Hamilton’s principle. Then, using the second-order Galerkin discretization, the partial differential governing equations of motion are transformed to nonlinear ordinary differential equations. The case of the primary parametric resonance and 1:1 internal resonance is considered. Four-dimensional averaged equation is obtained by using the method of multiple scales. From the averaged equation obtained here, the theory of normal form is used to give the explicit expressions of normal form. Based on normal form, the energy phase method is utilized to analyze the global bifurcations and multi-pulse chaotic dynamics of the composite laminated rectangular thin plate. The theoretic results obtained above illustrate the existence of the chaos for the Smale horseshoe sense in a parametrical and forcing excited composite laminated thin plate. The chaotic motions of the composite laminated rectangular thin plate are also found by using numerical simulation, which also indicate that there exist different shapes of the multi-pulse chaotic motions for the composite laminated rectangular thin plate.  相似文献   

18.
On the basis of anisotropic mathematical elasticity, using multiple conformal representations, the stress functions of multiple complex variables for an infinite multiply-connected anisotropic plate are derived. The functions are developed in Fourier series on unit circles, and the unknown coefficients of the functions are determined by undetermined coefficients method. Then the stresses in the plate can be calculated. A plate containing multiple elliptical holes or cracks is discussed, and the corresponding FORTRAN77 program is developed. Five examples are given. The results show that this method is very effective and convenient. The project supported by Aeronautical Science Foundation of China  相似文献   

19.
Minghui Yao  Wei Zhang 《Meccanica》2014,49(2):365-392
This paper investigates the multi-pulse global bifurcations and chaotic dynamics of the high-dimension nonlinear system for a laminated composite piezoelectric rectangular plate by using an extended Melnikov method in the resonant case. Using the von Karman type equations, Reddy’s third-order shear deformation plate theory and Hamilton’s principle, the equations of motion are derived for the laminated composite piezoelectric rectangular plate with combined parametric excitations and transverse excitation. Applying the method of multiple scales and Galerkin’s approach to the partial differential governing equation, the four-dimensional averaged equation is obtained for the case of 1:2 internal resonance and primary parametric resonance. From the averaged equations obtained, the theory of normal form is used to derive the explicit expressions of normal form with a double zero and a pair of pure imaginary eigenvalues. Based on the explicit expressions of normal form, the extended Melnikov method is used for the first time to investigate the Shilnikov type multi-pulse homoclinic bifurcations and chaotic dynamics of the laminated composite piezoelectric rectangular plate. The necessary conditions of the existence for the Shilnikov type multi-pulse chaotic dynamics of the laminated composite piezoelectric rectangular plate are analytically obtained. Numerical simulations also illustrate that the Shilnikov type multi-pulse chaotic motions can also occur in the laminated composite piezoelectric rectangular plate. Overall, both theoretical and numerical studies demonstrate that the chaos in the Smale horseshoe sense exists for the laminated composite piezoelectric rectangular plate.  相似文献   

20.
The nonlinear oscillations and resonant responses of the symmetric cross-ply composite laminated plates are investigated theoretically and experimentally. The governing equations of motion for the composite laminated plate are derived by using the von Karman type equation, Reddy’s third-order shear deformation plate theory, and Galerkin method with the geometric nonlinearity. The four-dimensional averaged equation is obtained by using the method of multiple scales. The frequency-response functions are analyzed under the consideration of strongly coupled of two modes. The influences of the resonance case on the softening and hardening type of nonlinearity are analyzed with different parameters for the composite laminated plates. The numerical results indicate that there exist the hardening and softening types of the composite laminated plate in the specific resonant case. The variation of the response amplitudes is studied for the composite laminated plate under combined the transverse and in-plane excitations. A sweep frequency experiment is performed to obtain the hardening and softening nonlinearities of a composite laminated plate. The experimental results coincide with the numerical results qualitatively. The influences of the excitation amplitudes on the softening and hardening types of nonlinearity are also analyzed for the composite laminated plate. The amplitude spectrums of the test plate also demonstrate that the change of the nonlinear dynamic responses may be caused by the subharmonic resonance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号