首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Amplex Red assay, a fluorescent assay for the detection of H(2)O(2), relies on the reaction of H(2)O(2) and colorless, nonfluorescent Amplex Red with a 1:1 stoichiometry to form colored, fluorescent resorufin, catalyzed by horseradish peroxidase (HRP). We have found that resorufin is artifactually formed when Amplex Red is exposed to light. In the absence of H(2)O(2) and HRP, the absorption and fluorescence spectra of Amplex Red changed during exposure to ambient room light or instrumental excitation light, clearly indicating that the fluorescent product resorufin had formed. This photochemistry was initiated by trace amounts of resorufin that are present in Amplex Red stock solutions. ESR spin-trapping studies demonstrated that superoxide radical was an intermediate in this process. Oxygen consumption measurements further confirmed that superoxide and H(2)O(2) were artifactually produced by the photooxidation of Amplex Red. The artifactual formation of resorufin was also significantly increased by the presence of superoxide dismutase or HRP. This photooxidation process will result in a less sensitive assay for H(2)O(2) under ambient light exposure and potentially invalid measurements under high energy exposure such as UVA irradiation. In general, precautions should be taken to minimize exposure to light during measurement of oxidative stress with Amplex Red.  相似文献   

2.
We report here that reduced pyridine nucleotides and reduced glutathione result in an oxidation of Amplex Red by dioxygen that is dependent on the presence of horseradish peroxidase (HRP). Concentrations of NADH and glutathione typically found in biological systems result in the oxidation of Amplex Red at a rate comparable to that produced, for example, by respiring mitochondria. The effects of NADH and glutathione in this assay system are likely to be the result of H(2)O(2) generation via a superoxide intermediate because both catalase and superoxide dismutase prevent the oxidation of Amplex Red. These results suggest caution in the assay of H(2)O(2) production in biological systems using the Amplex Red/HRP because the assay will also report the mobilization of NADH or glutathione. However, the interruption of this process by the addition of superoxide dismutase offers a simple and reliable method for establishing the source of the oxidant signal.  相似文献   

3.
The highly sensitive, convenient fluorescence assay, based on the oxidation of nonfluorescent 10-acetyl-3,7-dihydroxyphenoxazine (Amplex Red) to highly fluorescent resorufin, is becoming increasingly popular for hydrogen peroxide quantitation. Yet, the intricacies of the horseradish peroxidase-catalyzed oxidation of the reductant substrate Amplex Red by hydrogen peroxide and the resulting resorufin could complicate the assay design and data interpretation. In particular, substrate inhibition and enzyme inactivation at higher hydrogen peroxide concentrations were known to affect the enzyme kinetics and end-point fluorescence. In addition, here we report the spontaneous transformation of resorufin to less or nonfluorescent product(s) in the absence of hydrogen peroxide and horseradish peroxidase. This spontaneous decay of resorufin fluorescence is most prominent in the pH range 6.2-7.7, likely due to general base-catalyzed de-N-acetylation and polymerization of resorufin. From a practical point of view, precautions for properly designing assays for hydrogen peroxide or characterizing hydrogen peroxide-generating systems are discussed based on the spontaneous transformation of resorufin to less fluorescent compound(s), substrate inhibition and enzyme inactivation at higher (>100 microM) hydrogen peroxide concentrations, and enzymatic oxidation of resorufin to nonfluorescent resazurin.  相似文献   

4.
Features that alter the glycolipid sugar headgroup accessibility at the membrane interface have been studied in bilayer lipid model vesicles using a fluorescence technique with the enzyme galactose oxidase. The effects on oxidation caused by variation in the hydrophobic moiety of galactosylceramide or the membrane environment for galactosylceramide, monogalactosyldiacylglycerol and digalactosyldiacylglycerol were studied. For this study we combined the galactose oxidase method for determining the oxidizability of galactose containing glycolipids, and the fluorescence method for determining enzymatic hydrogen peroxide production. Exposed galactose residues with a free hydroxymethyl group at position 6 in the headgroup of glycolipids were oxidized with galactose oxidase and subsequently the resultant hydrogen peroxide was determined by a combination of horseradish peroxidase and 10-acetyl-3,7-dihydroxyphenoxazine (Amplex Red). Amplex Red reacts with hydrogen peroxide in the presence of horseradish peroxidase with a 1:1 stoichiometry to form resorufin. With this coupled enzyme approach it is also possible to determine the galactolipid transbilayer membrane distribution (inside-outside) in bilayer vesicles.  相似文献   

5.
Microdialysis coupled to HPLC is the preferred method for quantification of glutamate (Glu) concentrations, both in normal and pathological conditions. However, HPLC is a time consuming technique that suffers from poor temporal resolution. Here we describe an alternative method to measure glutamate concentrations in small-volume dialysis samples by quantifying hydrogen peroxide released by glutamate oxidase using the Amplex Red method. This system permits continuous automatic sample collection and the detection of a fluorescent reaction product, resorufin, which provides a measure of the glutamate concentration. Quantification can be carried out in small microdialysis samples to allow a temporal resolution of 60 s. Both in vitro and in vivo tests showed that this method was reproducible and reliable, detecting Glu along a linear scale. To validate the proposed method, extracellular Glu concentrations in the rat brain were measured and correlated with electrophysiological activity prior, during and after seizure induction with 4-aminopyridine. This method may be adapted to monitor other biologically active compounds, including acetylcholine and glucose, as well as other compounds that generate hydrogen peroxide as a reaction product and may be used as an alternative to other neurochemical methods.  相似文献   

6.
In this work, a highly sensitive fluorescent biosensor for quantitative superoxide radical detection, based on the coupled reaction superoxide dismutase-peroxidase enzymes and the use of the probe Amplex red, is described. Superoxide anion radical was produced via oxidation of xanthine by xanthine oxidase. Dismutation of superoxide was catalyzed by superoxide dismutase, generating hydrogen peroxide, which reacted stoichiometrically with the nonfluorescent Amplex red, in the presence of peroxidase, yielding the red-fluorescent oxidation product resorufin. The coupled superoxide dismutase-peroxidase system was immobilized in a single sol-gel matrix. The enzymatic activity of the encapsulated superoxide dismutase-peroxidase system was nearly identical to that of one of the soluble enzymes, indicating that sol-gel encapsulation preserved the hierarchy of the enzyme's activity. Specificity and reusability of the encapsulated system for up to four cycles were also demonstrated. The fluorescent biosensor was able to detect concentrations of superoxide as low as 20 nM in phospholipid model membranes composed of saturated or unsaturated phospholipids. These facts make this biosensor a simple, reliable, and highly sensitive method with a potential use in biological systems, food, and drinks.  相似文献   

7.
Plants respond to the attack of pathogens with the oxidative burst, a production of reactive oxygen species (ROS). In this work a cell culture suspension of Phaseolus vulgaris was used to investigate the oxidative burst triggered by a conidia suspension of different races of Colletotrichum lindemuthianum. As a defence response of the cells a two-phase peak was observed with all used races of Colletotrichum lindemuthianum, varying only in the produced amounts of hydrogen peroxide. Findings with additives such as superoxide dismutase (SOD), diphenyleneiodonium (DPI) and catalase gave rise to the conclusion that more superoxide radicals were produced than be detectable with Amplex Red as hydrogen peroxide. It is assumed that the conversion of the superoxide radical is spontaneous and not driven via a cell-derived superoxide dismutase. The addition of low-molecular cell wall components (ergosterol, glucosamine, galactosamine) showed clearly that compounds like this act as elicitors and thus are involved in triggering the burst. Furthermore, an evaluation of the metabolizing capacities of hydrogen peroxide of the suspension culture cells revealed the enormous capacity of the cells to detoxify this ROS.  相似文献   

8.
The ability of the histidine-rich peptides, histatin-5 (Hst-5) and histatin-8 (Hst-8), to support the generation of reactive oxygen species during the Cu-catalyzed oxidation of ascorbate and cysteine has been evaluated. High levels of hydrogen peroxide (70–580 mol/mol Cu/h) are produced by aqueous solutions containing Cu(II), Hst-8 or Hst-5, and a reductant, either ascorbate or cysteine, as determined by the postreaction Amplex Red assay. When the reactions are conducted in the presence of superoxide dismutase, the total hydrogen peroxide produced is decreased, more so in the presence of the peptides (up to 50%), suggesting the intermediacy of superoxide in these reactions. On the other hand, the presence of sodium azide or sodium formate, traps for hydroxyl radicals, has no appreciable effect on the total hydrogen peroxide production for the Cu–Hst systems. EPR spin-trapping studies using 5-(2,2-dimethyl-1,3-propoxy cyclophosphoryl)-5-methyl-1-pyrroline N-oxide (CYPMPO) in the cysteine–Cu(II) reactions reveal the formation of the CYPMPO–hydroperoxyl and CYPMPO–hydroxyl radical adducts in the presence of Hst-8, whereas only the latter was observed with Cu alone.  相似文献   

9.
We studied the effect of doxorubicin on the production of hydrogen peroxide by PC3 human prostate cancer cells, using a sensitive assay based on aminotriazole-mediated inhibition of catalase. PC3 cells exposed to increasing concentrations of doxorubicin had an increase in intracellular hydrogen peroxide that was concentration-dependent up to 1 microM doxorubicin. The apparent hydrogen peroxide concentration in the PC3 cells was 13 +/- 4 pM under basal steady-state conditions and increased to 51 +/- 13 pM after exposure to 1 microM doxorubicin for 30 min. The level of hydrogen peroxide in the medium as measured by Amplex Red did not increase as a result of doxorubicin treatment. PC3 cells overexpressing catalase were no more resistant to doxorubicin cytotoxicity as compared to non-transduced wild-type cells; therefore, the exact role of hydrogen peroxide in anthracycline cytotoxicity remains unproven. This study demonstrates that a specific oxidative event associated with the exposure of PC3 human prostate cancer cells to anthracyclines results in an increase in intracellular hydrogen peroxide.  相似文献   

10.
A sensitive and specific fluorimetric assay for the determination of pyruvate is reported here. This assay is based on the oxidation of pyruvate in the presence of pyruvate oxidase. Hydrogen peroxide generated by pyruvate oxidase reacts with nonfluorescent Amplex Red at a 1:1 stoichiometry to form the fluorescent product, resorufin. The assay is optimized with respect to pH of reaction buffer, enzyme concentration, dye concentration, and the time course. The usefulness of the assay is demonstrated by the accurate measurement of intracellular and extracellular pyruvate concentrations. The limit of detection of the assay is 5 nM.  相似文献   

11.
The gastric digestion of food containing oxidizable lipids and iron catalysts for peroxide decomposition such as (met)myoglobin from muscle meat can be accompanied by an extensive formation of potentially toxic lipid hydroperoxides. An early protective action by dietary antioxidants in the gastro-intestinal tract is plausible, especially for poorly bioavailable antioxidants such as polyphenols. Hence, the ability of antioxidants to inhibit lipid peroxidation initiated by dietary iron in mildly acidic emulsions is a valuable and general model. In this work, the ability of some ubiquitous dietary antioxidants representative of the main antioxidant classes (alpha-tocopherol, the flavonol quercetin, beta-carotene) to inhibit the metmyoglobin-induced peroxidation of linoleic acid is investigated by UV-visible spectroscopy and HPLC in mildly acidic emulsions. The phenolic antioxidants quercetin and alpha-tocopherol come up as the most efficient peroxidation inhibitors. Inhibition by quercetin essentially proceeds in the aqueous phase via a fast reduction of an unidentified activated iron species (with a partially degraded heme) produced by reaction of metmyoglobin with the lipid hydroperoxides. This reaction is faster by, at least, a factor 40 than the reduction of ferrylmyoglobin (independently prepared by reacting metmyoglobin with hydrogen peroxide) by quercetin. By contrast, alpha-tocopherol mainly acts in the lipid phase by reducing the propagating lipid peroxyl radicals. The poorer inhibition afforded by beta-carotene may be related to both its slower reaction with the lipid peroxyl radicals and its competitive degradation by autoxidation and/or photo-oxidation.  相似文献   

12.
The effects of solvent and reaction conditions on the catalytic activity of horseradish peroxidase (HRP) were investigated for oxidative polymerization of phenol in water/organic mixtures using hydrogen peroxide as an oxidant. Also, the structural changes of HRP were investigated by CD and absorption spectroscopy in these solvents. The results suggest that the yield of phenol polymer (the conversion of phenol to polymer) is strongly affected by the reaction conditions due to the structural changes of HRP, that is, the changes in higher structure of the apo-protein and dissociation or decomposition of the prosthetic heme. Optimum solvent compositions for phenol polymerization depend on the nature of the organic solvents owing to different effects of the solvents on HRP structure. In addition to initial rapid changes, slower changes of HRP structure occur in water/organic solvents especially at high concentrations of organic solvents. In parallel with these structural changes, catalytic activity of HRP decreases with time in these solvents. At higher reaction temperatures, the yield of the polymer decreases, which is also ascribed to modification of HRP structure. It is known that hydrogen peroxide is an inhibitor of HRP, and the yield of phenol polymer is strongly dependent on the manner of addition of hydrogen peroxide to the reaction solutions. The polymer yield decreases significantly when hydrogen peroxide was added to the reaction solution in a large amount at once. This is probably due to inactivation of HRP by excess hydrogen peroxide. From the CD and absorption spectra, it is suggested that excess hydrogen peroxide causes not only decomposition of the prosthetic heme but also modification of the higher structure of HRP.  相似文献   

13.
The effects of solvent and reaction conditions on the catalytic activity of horseradish peroxidase (HRP) were investigated for oxidative polymerization of phenol in water/organic mixtures using hydrogen peroxide as an oxidant. Also, the structural changes of HRP were investigated by CD and absorption spectroscopy in these solvents. The results suggest that the yield of phenol polymer (the conversion of phenol to polymer) is strongly affected by the reaction conditions due to the structural changes of HRP, that is, the changes in higher structure of the apo-protein and dissociation or decomposition of the prosthetic heme. Optimum solvent compositions for phenol polymerization depend on the nature of the organic solvents owing to different effects of the solvents on HRP structure. In addition to initial rapid changes, slower changes of HRP structure occur in water/organic solvents especially at high concentrations of organic solvents. In parallel with these structural changes, catalytic activity of HRP decreases with time in these solvents. At higher reaction temperatures, the yield of the polymer decreases, which is also ascribed to modification of HRP structure. It is known that hydrogen peroxide is an inhibitor of HRP, and the yield of phenol polymer is strongly dependent on the manner of addition of hydrogen peroxide to the reaction solutions. The polymer yield decreases significantly when hydrogen peroxide was added to the reaction solution in a large amount at once. This is probably due to inactivation of HRP by excess hydrogen peroxide. From the CD and absorption spectra, it is suggested that excess hydrogen peroxide causes not only decomposition of the prosthetic heme but also modification of the higher structure of HRP.  相似文献   

14.
On-site monitoring of volatile fatty acids (VFAs), such as propionate, is industrially and medically important. The present study developed a VFA biosensing system comprised of two recombinant enzymes, propionate coenzyme A (CoA) transferase (PCT) from Clostridium propionicum and acyl-CoA oxidase from Arabidopsis thaliana. This system produced hydrogen peroxide in the presence of acetyl-CoA, oxygen, and VFA substrates, which could be quantified by colorimetric methods using peroxidase and dye reagents (e.g., p-aminobenzoic acid plus 4-aminoantipyrine or Amplex Red). The use of PCT and acetyl-CoA, rather than acyl-CoA synthetases (ACS) and CoA-SH, obviated a background reaction of dye reagents with CoA-SH and enabled very sensitive detection of VFAs (down to 1 microM propionate, more than 100-fold more sensitive compared to previously developed ACS biosensors). We demonstrated its utility by measuring propionate concentrations in serum and fermentation samples. Results suggest that our biosensing system is applicable to the detection of propionate in medical and fermentation samples.  相似文献   

15.
Oxidation of Amplex red (AR) by H(2)O(2) in the presence of horseradish peroxidase (HRP) gives rise to an intensely colored product, resorufin. This reaction has been frequently employed for measurements of low concentrations of H(2)O(2) in biological samples. In the current study, we show that alternative peroxidase substrates, such as p-hydroquinone, acetaminophen, anticancer mitoxantrone, and ametantrone, inhibit AR oxidation by consuming H(2)O(2) in a competitive process. In contrast, the anthracycline agents doxorubicin, daunorubicin, and 5-iminodaunorubicin are markedly less efficient as competitors in these reactions, as is salicylic acid. When [H(2)O(2)]>[AR], the generated resorufin was oxidized by HRP and H(2)O(2). In the presence of anthracyclines, this process was inhibited and occurred with a lag time, the duration of which depended on the concentration of anthracycline. We propose that the mechanism of this inhibition is due to the antioxidant activity of anthracyclines involving the reduction of the resorufin-derived phenoxyl radical by the drugs' hydroquinone moiety back to resorufin. In addition to HRP, lactoperoxidase, myeloperoxidase, and HL-60 cells, naturally rich in myeloperoxidase, also supported these reactions. Results of this study suggest that extra caution is needed when using AR to measure cellular H(2)O(2) in the presence of alternative peroxidase substrates. They also demonstrate that the anticancer anthracyclines may function as antioxidants.  相似文献   

16.
In this work we report the development of a highly sensitive fluorescent multienzymatic biosensor for quantitative xanthine detection. This biosensor is built by the simultaneous encapsulation of three enzymes, xanthine oxidase, superoxide dismutase and peroxidase, in a single sol-gel matrix coupled to the Amplex Red probe. The sol-gel chemistry yields a porous, optically transparent matrix that retains the natural conformation and the reactivity of the three co-immobilized proteins. Xanthine determination is based on a sequence of reactions, namely catalytic oxidation of xanthine to uric acid and superoxide radical, and subsequent catalytic dismutation of the radical, resulting in the formation of hydrogen peroxide, which reacts stoichiometrically with non-fluorescent Amplex Red to produce highly fluorescent resorufin. The optimal operational conditions for the biosensor were investigated. Linearity was observed for xanthine concentrations up to 3.5 microM, with a detection limit of 20 nM, which largely improved the sensitivity of the current xanthine biosensors. The developed biosensor is reusable and remains stable for 2 weeks under adequate storage conditions.  相似文献   

17.
We report on the development of a sensitive real-time assay for monitoring the activity of l-asparaginase that hydrolyzes l-asparagine to l-aspartate and ammonia. In this method, l-aspartate is oxidized by l-aspartate oxidase to iminoaspartate and hydrogen peroxide (H2O2), and in the detection step horseradish peroxidase uses H2O2 to convert the colorless, nonfluorescent reagent Amplex Red to the red-colored and highly fluorescent product resorufin. The assay was validated in both the absorbance and the fluorescence modes. We show that, due to its high sensitivity and substrate selectivity, this assay can be used to measure enzymatic activity in human serum containing l-asparaginase.  相似文献   

18.
A microfluidic platform or “microfluidic mapper” is demonstrated, which in a single experiment performs 36 parallel biochemical reactions with 36 different combinations of two reagents in stepwise concentration gradients. The volume used in each individual reaction was 36 nl. With the microfluidic mapper, we obtained a 3D enzyme reaction plot of horseradish peroxidase (HRP) with Amplex Red (AR) and hydrogen peroxide (H2O2), for concentration ranges of 11.7 μM to 100.0 μM and 11.1 μM to 66.7 μM for AR and H2O2, respectively. This system and methodology could be used as a fast analytical tool to evaluate various chemical and biochemical reactions especially where two or more reagents interact with each other. The generation of dual concentration gradients in the present format has many advantages such as parallelization of reactions in a nanoliter-scale volume and the real-time monitoring of processes leading to quick concentration gradients. The microfluidic mapper could be applied to various problems in analytical chemistry such as revealing of binding kinetics, and optimization of reaction kinetics.  相似文献   

19.
The mutagenicity of 2,4-diaminotoluene (DAT) in Ames's Salmonella/microsome test was remarkably enhanced by treatment with hydrogen peroxide. Therefore, identification of the major mutagenic reaction product of 2,4-DAT with hydrogen peroxide at room temperature has been performed. Red precipitates were produced in a 2-day reaction mixture and were column chromatographed on silica gel. 5 fractions having mutagenic potency were obtained. The red crystalline needles, obtained as the major reaction product, were separated from fraction 2 and were subjected to high resolution mass spectrometry, 1H- and 13C-NMR spectrometry. The structure of the compound was determined to be 2,7-diamino-3,8-dimethylphenazine from physicochemical and chemical evidence. The compound induced 212 revertants/nmole in Salmonella typhimurium TA98 with 25 microliters S9 per plate.  相似文献   

20.
The usefulness of 1-naphthol as substrate for horseradish peroxidase (HRP) in immunohistochemistry was studied using the peroxidase-antiperoxidase (PAP) and avidin-biotin-complex (ABC) methods in the demonstration of glial fibrillary acidic protein (GFAP), vimentin, carbonic anhydrase C (CA.C), and factor VIII-related antigen (FVIII/RAg) in central nervous tissue and cerebral tumors. In the presence of ammonium carbonate, 1-naphthol is oxidized by HRP and hydrogen peroxide, producing a fine gray-violet precipitate. The oxidation product of 1-naphthol proved capable of binding a great number of basic dyes. For each stain the final reaction product had a characteristic color that was different from the spontaneous color of the dye and from the color displayed by nuclei. The final color obtained with this procedure was alcohol resistant and could be mounted in solvent-based mounting media. The results obtained with the 1-naphthol basic dye (1-NBD) method were compared with those obtained using the diaminobenzidine (DAB) reaction in the demonstration of GFAP-positive astrocytes. The DAB reaction produced a more intense staining but also a coarser precipitate than the 1-NBD reaction. The 1-NBD procedure showed more morphological detail of fine structures and did not obscure nuclei and mitosis. The very low toxicity of 1-naphthol compared with DAB (a suspected carcinogen) is an important advantage of the 1-NBD method, as is its high specificity and sensitivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号