首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 156 毫秒
1.
采用Gleeble-1500D热力模拟试验机进行了新型Al-Zn-Mg-Cu高强铝合金的热压缩试验,变形温度为420℃~350℃,应变速率为0.01 s-1~1 s-1,变形程度为20%~80%。分析了热变形参数(变形温度、应变速率和变形程度)对组织演变机理和规律的影响。结果表明,温度和变形程度显著影响该合金组织演变机理和规律。在试验温度范围内,压缩变形程度达到60%时,原始铸态组织完全转变为均匀的锻态组织。高温有利于该合金动态再结晶过程的发生,应变适中时,组织以不连续动态再结晶产生新晶粒,再结晶分数较少;应变很大时,组织发生几何动态再结晶,再结晶分数较高。低温时,锻态变形组织基本为加工硬化或动态回复组织。  相似文献   

2.
采用Gleeble-1500D热力模拟试验机进行新型Al-Zn-Mg-Cu高强铝合金的热压缩实验,变形程度为10%~80%,变形温度为300℃~450℃,应变速率为0.001s-1~10s-1。利用光学显微镜(OM)和透射显微镜(TEM)观察合金在不同压缩条件下的组织形貌特征,分析了热变形参数对微观组织的影响。研究结果表明,试验温度范围内,变形程度达到50%以上时,试样呈锻态变形组织,且变形程度的增大,有利于动态再结晶的进行;随着变形温度的升高和应变速率的减小,位错密度减小,亚晶粒尺寸增大。新型Al-Zn-Mg-Cu合金热压缩变形过程中主要的软化机制为动态回复和动态再结晶,当应变速率为0.01s-1、变形温度为300℃~400℃时,主要发生动态回复;当变形温度为450℃、应变速率在0.001s-1~10s-1范围内时,其变形以动态再结晶为主。  相似文献   

3.
采用高温压缩实验研究了新型Al-Zn-Mg-Cu高强铝合金在温度300~450℃、应变速率0.001~10 s-1和压缩变形程度30%~80%范围内的热变形行为和组织演变。分析了该合金在实验参数范围内变形的应力-应变曲线特征。动力学分析获得该合金热变形的应力指数和激活能分别为4.97和150.07 kJ/mol,表明合金的热变形主要受扩散所控制。金相组织观察发现,随着变形温度的升高或应变速率的降低,变形组织晶内析出相逐渐溶入基体组织,晶内组织逐渐趋于均匀;同时粗大的晶粒沿变形方向拉长,晶界难溶相的碎化和弥散化程度增大。TEM和EBSD(electron back-scattered diffraction)组织分析表明,该合金在高温压缩变形过程中组织演变主要是亚晶的形成和完善的过程,热变形组织演变机理为动态回复和大应变几何动态再结晶。  相似文献   

4.
热处理对Al-Zn-Mg-Cu合金第二相粒子分布和晶粒尺寸的影响   总被引:1,自引:0,他引:1  
通过对均匀化改锻后的坯料进行了固溶+过时效和直接过时效的中间热处理,分析了新型Al-Zn-Mg-Cu高强铝合金经过不同中间热处理后微观组织中第二相粒子的大小和分布特征,以及第二相粒子分布特征对随后热变形和退火工序过程中晶粒尺寸演变的影响。结果表明,锻坯经过400 ℃×12 h直接过时效中间处理后,组织中第二相粒子的尺寸呈现“双峰”分布特征;把具有该组织特征的试样加热到420 ℃的始锻温度,进行50%的压缩变形,再经400 ℃×1 h退火处理后,得到比较均匀细小的晶粒组织。  相似文献   

5.
Al-Zn-Mg-Cu合金热压缩流变应力行为及组织演变   总被引:1,自引:0,他引:1  
采用Gleeble-1500D热力模拟试验机进行了Al-Zn-Mg-Cu合金的等温压缩实验,变形温度为250~450℃,应变速率为0.001~0.1 s-1,变形量为10%~50%,获得了热压缩变形的真应力-真应变曲线.应力-应变曲线基本呈现回复型曲线特征,计算得出其应力指数为4.60,热变形激活能为186.70 kJ·mol-1;综合分析了变形温度、应变速率和变形量对组织演变的影响规律,确定了Al-Zn-Mg-Cu合金的锻造工艺参数为:锻造温度区间420350℃,应变速率0.01~0.1 s-1,变形量>30%.  相似文献   

6.
7.
采用扫描电镜、差热分析、XRD分析、硬度测试等实验方法,研究了高速机车用挤压铸造Al-Zn-Mg-Cu合金传动空心轴的最佳单级固溶时效处理工艺。结果表明:空心轴经480℃固溶12 h后,晶界处共晶相的范围变窄,粗大的第二相基本消失,晶界呈不连续的链条状,硬度达到峰值;固溶后空心轴经120℃时效20 h后,晶界的析出相呈链状分布,晶内的析出相为均匀细密分布,且以MgZn2相为主,试样硬度达到峰值210;高速机车用挤压铸造Al-Zn-Mg-Cu合金传动空心轴最佳单级固溶时效处理工艺为480℃固溶12 h后再120℃时效20 h。  相似文献   

8.
喷射成形Al-Zn-Mg-Cu合金的显微组织演变   总被引:5,自引:0,他引:5  
采用喷射成形技术制备了高Zn含量的超高强度Al-12.40Zn-2.68Mg-2.40Cu合金(质量分数,%).对合金进行热挤压,在不同固溶温度和时间下对挤压合金进行固溶处理,并进行力学性能测试.结果表明:随着固溶温度的升高及固溶时间的延长,第二相富Cu颗粒随之相应溶解,再结晶晶粒合并与长大;当固溶温度达到490℃时,富Cu颗粒相基本溶解,合金完全再结晶.合金进行T6热处理后,抗拉强度达到800MPa以上,延伸率为7.5%.  相似文献   

9.
7A04铝合金热变形过程微观组织演变   总被引:1,自引:1,他引:0  
以热模拟压缩实验和金相实验为基础,探讨7A04铝合金热压缩变形过程中应变速率和变形温度对流变应力和微观组织的影响规律。通过对实验数据进行回归分析,构建了该合金热压缩变形过程的微观组织演化模型。将建立的材料模型导入有限元软件DEFORM-3D中,对热压缩过程进行数值模拟。结果表明,所建立的微观组织演化模型可以很好的预测7A04合金在热变形过程中晶粒尺寸的演化规律。  相似文献   

10.
在Gleeble-1500热模拟试验机上,对添加Zr元素的Al-Zn-Mg-Cu合金在300~450℃和0.000 5~1.000s-1变形下进行热压缩试验。采用金相显微观察(OM)、电子背散射衍射分析(EBSD)和透射电镜分析(TEM)测试技术,研究了不同热变形工艺下合金的显微组织演变规律。结果表明,随着变形温度的升高和应变速率的降低,合金的位错密度降低,亚晶尺寸增加,峰值应力减小。在热变形工艺条件下,合金组织主要由小角度晶界构成,动态软化机制主要为动态回复。在AlZn-Mg-Cu合金中添加Zr元素,生成了大量尺寸为10~25nm的弥散共格Al3Zr粒子,该粒子在热变形过程中有效钉扎位错和亚晶界,抑制热变形过程中再结晶的发生,是热变形条件下仍保持动态回复组织的原因。  相似文献   

11.
采用热力模拟平面压缩实验和电子背散射衍射(EBSD)组织分析测试方法,研究了新型Al-Zn-Mg-Cu高强铝合金热压缩变形以及退火微观组织和织构。结果表明,在变形温度为350℃,应变速率为0.1 s~(-1)的条件下,合金微观组织演变机理为动态回复和大应变几何动态再结晶,出现旋转立方织构{001}110和黄铜织构{111}110,分别沿着α-取向线和β-取向线分布;退火后旋转立方织构减少,黄铜织构增多,旋转立方织构沿着α-取向线向黄铜织构转变。在变形温度为420℃,应变速率为0.1 s~(-1)的条件下,合金变形组织较均匀,再结晶晶粒分布在变形剧烈的晶界或三角晶界处,出现的织构种类主要有旋转立方织构{110}110、黄铜型{011}211织构;退火过程中发生亚动态再结晶,旋转立方织构强度增强,黄铜型{011}211织构有向高斯织构方向移动的趋势。  相似文献   

12.
利用Gleeble-3500试验机,在300~450℃和0.1~10 s~(-1)的变形条件下,研究了大规格铸锭晶粒尺寸的不均匀性对新型高强Al-7.68Zn-2.12Mg-1.98Cu-0.12Zr合金热变形行为的影响。SEM观察表明,大铸锭表层的晶粒尺寸比心层细小。热变形过程中,细晶组织(铸锭表层)的流变应力在高温和低应变速率条件下低于粗晶组织(铸锭心层)。计算得到表层和心层组织的热变形激活能分别为140和125.4 kJ/mol。基于位错密度理论,利用一种两阶段型本构方程分别预测了粗晶和细晶组织的流变应力,并建立了不同晶粒度组织的动态再结晶软化方程。电子背散射衍射(EBSD)观察表明,合金在300~400℃条件下发生动态回复,在450℃和低应变速率速(0.1 s~(-1))条件下出现动态再结晶(DRX)现象,动态再结晶晶粒在原始大角度晶界上形核。由于表层(细晶)组织的晶界密度高,因此其动态再结晶程度高于心层(粗晶)组织。  相似文献   

13.
采用Gleeble-1500热模拟机对圆柱试样进行恒温和恒速压缩变形实验,研究了01570铝合金在变形温度为360-480℃、应变速率为0.001~1s^-1条件下的流变变形行为。结果表明:应变速率和变形温度对合金流变应力的大小有显著影响,流变应力随温度升高而降低,随应变速率的提高而增大,达到峰值后趋于平稳,表现出动态回复的特征。可用包含Arrhenius项的Zener-Hollomon参数描述01570铝合金高温塑性变形时的流变行为。  相似文献   

14.
2519铝合金热压缩变形流变应力行为   总被引:19,自引:6,他引:13  
在 Gleeble- 15 0 0热模拟机上对 2 5 19铝合金进行等温热压缩实验 ,变形温度为 30 0~ 5 0 0℃ ,应变速率为0 .0 5~ 2 5 s- 1 ,研究其热压缩变形的流变应力行为。结果表明 :2 5 19铝合金真应力 -应变曲线在低应变速率 (ε<2 5 s- 1 )条件下 ,流变应力开始随应变增加而增大 ,达到峰值后趋于平稳 ,表现出动态回复特征 ;而在高应变速率 (ε≥ 2 5 s- 1 )条件下 ,应力出现锯齿波动达到峰值后逐渐下降 ,表现出不连续再结晶特征。在用 Arrhenius方程描述 2 5 19铝合金热变形行为时 ,其变形激活能 Q为 16 7.81k J/ mol  相似文献   

15.
研究了退火、淬火、双级时效工艺参数对A-Zn-Mg-Cu合金薄板组织,性能的影响。确定了“O”、“T62”状态的热处理工艺制度,即退火温度360-380℃,淬火温度470℃,双级时效制度(75℃,12h)+(150℃,12h),试验结果表明,该薄板具有良好的抗应腐蚀性能,其技术指标达到用户的要求。  相似文献   

16.
2219铝合金热压缩变形流变应力   总被引:2,自引:0,他引:2  
欧玲  孙斌  王智 《热加工工艺》2008,37(2):42-45
通过Gleeble-1500热模拟机对2219铝合金在应变速率为0.1~10s-1、变形温度为320~440℃的流变应力行为进行了研究.结果表明:在实验条件范围内,2219铝合金热压缩变形时,流变应力随变形温度的升高而降低,随变形速率提高而增大;可采用Zener-Hollomon参数的的双曲正弦函数来描述2219铝合金高温变形的峰值流变应力行为;获得的峰值流变应力解析式中,A、α和,n值分别为2.65×10 10s-1、0.020 MPa-1和6.91,热变形激活能Q为153.3kJ/mol.  相似文献   

17.
在Gleeble-1500热模拟机上对7056铝合金进行热压缩实验,变形温度为300~450℃,应变速率为0.01~10 s~(-1),研究其热压缩流变应力行为.结果表明:流变应力开始随应变的增加而增大,出现峰值后逐渐趋于平稳;应力峰值随着温度的升高而减小,随着应变速率的增大而增大;可用包含Zener-Hollomon参数的双曲正弦关系来描述合金热流变行为,其变形激活能为224.3826 kJ/mol.  相似文献   

18.
研究了在应变速率0.001 s-1条件下,TLM钛合金在室温压缩和850 ℃热压缩的形变机理和组织演变规律。实验结果表明:TLM钛合金在冷压缩和热压缩条件下具有不同的形变机理和组织演变规律。在冷压缩过程中,TLM钛合金的形变特征主要是孪生、应力诱发马氏体转变及位错滑移;在850 ℃热压缩过程中,TLM钛合金的形变机理主要是位错滑移、动态回复和动态再结晶。在热压缩过程中,流变应力的软化过程与压缩过程中的动态回复和动态再结晶有关。TLM钛合金在冷压缩和热压缩条件下的抗压缩强度分别为975和40 MPa;相比冷压缩强度,TLM合金在850 ℃条件下的热抗压缩强度降低了96%  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号