首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
用1米掠入射光栅谱仪测量了在点聚焦和线聚焦两种打靶方式下,单脉冲或双脉冲驱动锗薄膜产生的等离子体XUV光谱。并对测得结果进行了分析讨论。在点聚焦打靶条件下,等离子体发射的XUV光谱主要为底衬材料发射的谱线,集中在小于19um的波长范围内。在靶长10mm线聚焦打靶条件下,Ge等离子体谱线增多,出现了GeXXⅢ3s─3pJ=0-1和J=2-1两条激光线。C离子的Hα线显著变强。  相似文献   

2.
测量了激光加热块状银靶产生的等离子体XUV光谱.计算了T_e分别为65eV,86eV和130eV时,AgXIX4s-4P,4P-4d,4d-4f7条谱线在不同电子密度时的强度.根据AgXIX4d~2D_(s/2~-)4f~2F_(r/2)和4P~2P_(3/2)-4d~2D_(s/2)两条谱线的强度比,推导了激光银等离子体电子密度.当入射激光功率密度W为6×10~(12)W/cm~2时,银等离子体电子密度N_e=1×10~(20)/cm~3. 关键词:  相似文献   

3.
4.
5.
激光等离子体光谱法用于测量水溶液中钙的浓度   总被引:1,自引:1,他引:0  
采用激光等离子体光谱法在所建立的实验装置上测量水溶液中钙的含量, 用调Q YAG:Nd激光作为激光发源。实验结果表明,钙含量与光谱线强度成正比。得到的最大相对误差为3.79%, 可测得的最低钙浓度为0.312 5%,线性相关系数为0.992 87。实验证明该光谱分析法简便、可靠、具有较高的准确度。  相似文献   

6.
激光等离子体软X光源8—20nm光谱辐射研究   总被引:1,自引:0,他引:1  
研制了了一种脉冲重复频率为10Hz的激光等离子软X射线源;傅波长0.53μm和波长1.06μm的激光脉冲,聚焦在不同的金属靶上,使之离子化。  相似文献   

7.
测量了线聚焦激光加热锗等离子体发射的XUV光谱,对GeXX~GeXXⅥ谱线进行了辨认和分类。给出了谱线波长和相对强度;计算了辐射跃迁几率和吸收振子强度;并与其它实验室有关结果进行了比较。  相似文献   

8.
利用“星光”激光装置的线聚焦激光束辐照碳铝组合靶,形成X光点源及铝等离子体的衰减区。用带时间分辨的平场光栅谱仪测量由碳等离子体发射的X射线在穿过长为3mm的铝等离子体后强度随时间的变化。测量结果表明该方法用于激光等离子体衰减系数测量是可行的。  相似文献   

9.
为了研究激光推进技术中激光与材料相互作用的机制,获取等离子体状态参数及力学参数,采用Nd:YAG被动调Q固体激光器烧蚀硬铝,通过激光诱导等离子体光谱技术测得等离子体光谱和温度,由冲量摆测得力学参数。实验结果显示:在激光功率密度0.534×108 W/cm2时,靶材表面的等离子体温度在等离子体辐射过程中呈二次曲线衰减;改变靶材等离子体点燃阈值附近的激光功率密度时,随着功率密度的增加,等离子体温度、冲量耦合系数也随着增大,当功率密度达到靶材的等离子体点燃阈值时,各参数达到最大,此后随着功率密度增加,由于等离子体对能量的屏蔽作用,导致靶材表面的等离子体温度降低,等离子体获得的动能减少,靶材耦合的冲量降低。  相似文献   

10.
测量了线聚焦激光加热锗等离子体发射的XUV光谱,对GeXX~GeXXⅥ谱线进行了辨认和分类。给出了谱线波长和相对强度;计算了辐射跃迁几率和吸收振子强度;并与其它实验室有关结果进行了比较。  相似文献   

11.
 为了研究激光推进技术中激光与材料相互作用的机制,获取等离子体状态参数及力学参数,采用Nd:YAG被动调Q固体激光器烧蚀硬铝,通过激光诱导等离子体光谱技术测得等离子体光谱和温度,由冲量摆测得力学参数。实验结果显示:在激光功率密度0.534×108 W/cm2时,靶材表面的等离子体温度在等离子体辐射过程中呈二次曲线衰减;改变靶材等离子体点燃阈值附近的激光功率密度时,随着功率密度的增加,等离子体温度、冲量耦合系数也随着增大,当功率密度达到靶材的等离子体点燃阈值时,各参数达到最大,此后随着功率密度增加,由于等离子体对能量的屏蔽作用,导致靶材表面的等离子体温度降低,等离子体获得的动能减少,靶材耦合的冲量降低。  相似文献   

12.
镁激光等离子体X射线光谱   总被引:1,自引:0,他引:1  
  相似文献   

13.
激光等离子体光谱法用于测量硬质合金中钴含量   总被引:1,自引:1,他引:0  
以Nd∶YAG调Q固体激光器为激发光源,YG系列硬质合金为样品在建立的实验装置上对钴的谱线进行了测量。实验显示钴的345.35 nm灵敏线强度随功率密度变化呈抛物形变化趋势,当功率密度大于1.2×108 W·cm-2时谱线强度较强并且离散度较小。对YG系列硬质合金中钴含量的测定表明, 钴的浓度与其谱线强度成很好的线性关系,测量的浓度最大相对误差为5.08%,测量结果可靠、具有较高的准确度。  相似文献   

14.
研制成一台由柱面反射镜和球面反射镜组成的掠入射前置光学系统和变间距球面光栅组成的掠入射平场光栅谱仪,它不仅有较高的效率和光谱分辨,调整方便,而且还具有在4.4nm~30nm波长范围里同时获得一维空间分辨光谱的能力.用该谱仪成功地获得了线聚焦激光产生的Si,Cu及其它元素的等离子体柱的轴向空间分辨光谱.该谱仪很适合与具有平直接收表面的光电探测器,如软X射线条纹相机等联用以获得时间分辨光谱.  相似文献   

15.
利用人工神经网络进行激光等离子体诊断   总被引:1,自引:0,他引:1  
宋向阳  韩申生 《光学学报》1996,16(4):00-503
利用前馈神经网络对激光等离子体打靶实验中所得的X光光谱数据进行处理,可以方便地球出等离子体的电子温度和电子密度等参数。在对网络的训练时采用误差信号反向传输算法,训练后的神经网络能够有效地对X光光谱数据进行处理,文中给出了用此法算出的Mg等离子体电子温度和电子密度的空间分布轮廓,与用传统方法所得的结果完全吻合。  相似文献   

16.
王洪建  肖沙里  施军 《光子学报》2014,40(8):1196-1200
为了准确诊断激光等离子体的电子密度,提出了一种基于极化光谱的类氦共振线与互组合线相对强度比诊断电子密度的方法.该法考虑了激光等离子体发射的X射线存在极化的特性,用极化光谱理论对测量的类氦共振线和互组合线光谱相对强度比进行精密校正,再推导等离子体的电子密度.在2×10 J激光装置上进行了实验,使用极化PET(002)晶体谱仪测量了Al类氦离子光谱,利用光谱的极化特性推出Al等离子体的电子密度约为1.5×1020 cm-3.结果表明极化X光谱推导等离子体电子密度方法适合激光高温高密等离子体诊断.  相似文献   

17.
王洪建  肖沙里  施军 《光子学报》2011,(8):1196-1200
为了准确诊断激光等离子体的电子密度,提出了一种基于极化光谱的类氦共振线与互组合线相对强度比诊断电子密度的方法.该法考虑了激光等离子体发射的X射线存在极化的特性,用极化光谱理论对测量的类氦共振线和互组合线光谱相对强度比进行精密校正,再推导等离子体的电子密度.在2×10 J激光装置上进行了实验,使用极化PET(002)晶体...  相似文献   

18.
葛愉成  李元景  康克军 《物理学报》2005,54(6):2669-2675
介绍用亚皮秒超短激光脉冲直接测量窄带飞秒真空超紫外线(XUV)脉冲时间结构的方法. 可以由XUV激发惰性气体产生、并在与超短脉冲激光的线性极化方向成0°或90°的方向上测量 得到的光电子能量微分谱重建这种时间结构. 谱仪的能量分辨率和所选取的能量间隔大小是 测量及计算的两个重要参数. 上述方法有很宽的时间测量范围和很高的分辨率,可以用于飞 秒计量学和与原子运动有关的超快速动力学过程的研究. 关键词: 超快速测量 超短脉冲激光 超紫外线(XUV)时间结构 光电子能量微分谱  相似文献   

19.
安承武 Merti.  M 《光学学报》1996,16(4):16-419
利用光学多通道分析仪(OMAⅢ)研究脉冲激光沉积钛酸钡薄膜过程中的激光诱导等离子体的时间分辨发射光谱,利用各种粒子不同时刻发射的谱线强度描绘成该粒子的飞行时间谱,表征了等离子体中该粒子的空间浓度分布,根据飞行时间谱的特征,推算了粒子束脉冲(等离子体)的空间宽度及其与缓冲气体压力的关系,提出了在激光沉积多元氧化物薄膜过程中的合适的缓冲气体压力范围,解释了激光原位沉积高温超导薄膜中所需氧气分压达30P  相似文献   

20.
激光诱导击穿火焰等离子体光谱研究   总被引:1,自引:1,他引:1       下载免费PDF全文
采用PI-MAX-II型增强型电荷耦合器件, 用Nd:YAG纳秒脉冲激光器输出的1064 nm强光束击穿在一个大气压的空气中燃烧的酒精灯火焰, 对激光诱导击穿酒精灯火焰产生的等离子体光谱进行了初步研究. 根据美国国家标准与技术研究院原子发射谱线数据库, 对等离子体中的主要元素的特征谱线进行了标识和归属. 通过激光诱导击穿空气等离子体光谱、激光诱导击穿酒精灯火焰等离子体光谱、激光诱导酒精喷灯火焰等离子体光谱的对比分析, 发现不同燃烧状况下的光谱中各原子谱线的相对强度是不同的. 这些结果对于使用激光诱导击穿技术分析和研究碳氢燃料在空气中的燃烧特性具有重要的意义和参考价值, 同时也为将该技术应用于燃烧诊断提供了实验依据.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号