首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Landsat urban mapping based on a combined spectral-spatial methodology   总被引:1,自引:0,他引:1  
Urban mapping using Landsat Thematic Mapper (TM) imagery presents numerous challenges. These include spectral mixing of diverse land cover components within pixels, spectral confusion with other land cover features such as fallow agricultural fields and the fact that urban classes of interest are of the land use and not the land cover category. A new methodology to address these issues is proposed. This approach involves, as a first step, the generation of two independent but rudimentary land cover products, one spectral-based at the pixel level and the other segment-based. These classifications are then merged through a rule-based approach to generate a final product with enhanced land use classes and accuracy. A comprehensive evaluation of derived products of Ottawa, Calgary and cities in southwestern Ontario is presented based on conventional ground reference data as well as inter-classification consistency analyses. Producer accuracies of 78% and 73% have been achieved for urban ‘residential’ and ‘commercial/industrial’ classes, respectively. The capability of Landsat TM to detect low density residential areas is assessed based on dwelling and population data derived from aerial photography and the 2001 Canadian census. For low population densities (i.e. below 3000 persons/km2), density is observed to be monotonically related to the fraction of pixels labeled ‘residential’. At higher densities, the fraction of pixels labeled ‘residential’ remains constant due to Landsat's inability to distinguish between high-rise apartment dwellings and commercial/industrial structures.  相似文献   

2.
The potential of multitemporal coarse spatial resolution remotely sensed images for vegetation monitoring is reduced in fragmented landscapes, where most of the pixels are composed of a mixture of different surfaces. Several approaches have been proposed for the estimation of reflectance or NDVI values of the different land-cover classes included in a low resolution mixed pixel. In this paper, we propose a novel approach for the estimation of sub-pixel NDVI values from multitemporal coarse resolution satellite data. Sub-pixel NDVIs for the different land-cover classes are calculated by solving a weighted linear system of equations for each pixel of a coarse resolution image, exploiting information about within-pixel fractional cover derived from a high resolution land-use map. The weights assigned to the different pixels of the image for the estimation of sub-pixel NDVIs of a target pixel i are calculated taking into account both the spatial distance between each pixel and the target and their spectral dissimilarity estimated on medium-resolution remote-sensing images acquired in different periods of the year. The algorithm was applied to daily and 16-day composite MODIS NDVI images, using Landsat-5 TM images for calculation of weights and accuracy evaluation.Results showed that application of the algorithm provided good estimates of sub-pixel NDVIs even for poorly represented land-cover classes (i.e., with a low total cover in the test area). No significant accuracy differences were found between results obtained on daily and composite MODIS images. The main advantage of the proposed technique with respect to others is that the inclusion of the spectral term in weight calculation allows an accurate estimate of sub-pixel NDVI time series even for land-cover classes characterized by large and rapid spatial variations in their spectral properties.  相似文献   

3.
Super-resolution land cover mapping with indicator geostatistics   总被引:3,自引:0,他引:3  
Many satellite images have a coarser spatial resolution than the extent of land cover patterns on the ground, leading to mixed pixels whose composite spectral response consists of responses from multiple land cover classes. Spectral unmixing procedures only determine the fractions of such classes within a coarse pixel without locating them in space. Super-resolution or sub-pixel mapping aims at providing a fine resolution map of class labels, one that displays realistic spatial structure (without artifact discontinuities) and reproduces the coarse resolution fractions. In this paper, existing approaches for super-resolution mapping are placed within an inverse problem framework, and a geostatistical method is proposed for generating alternative synthetic land cover maps at the fine (target) spatial resolution; these super-resolution realizations are consistent with all the information available.More precisely, indicator coKriging is used to approximate the probability that a pixel at the fine spatial resolution belongs to a particular class, given the coarse resolution fractions and (if available) a sparse set of class labels at some informed fine pixels. Such Kriging-derived probabilities are used in sequential indicator simulation to generate synthetic maps of class labels at the fine resolution pixels. This non-iterative and fast simulation procedure yields alternative super-resolution land cover maps that reproduce: (i) the observed coarse fractions, (ii) the fine resolution class labels that might be available, and (iii) the prior structural information encapsulated in a set of indicator variogram models at the fine resolution. A case study is provided to illustrate the proposed methodology using Landsat TM data from SE China.  相似文献   

4.
Mixed pixels are a major problem in mapping land cover from remotely sensed imagery. Unfortunately, such imagery may be dominated by mixed pixels, and the conventional hard image classification techniques used in mapping applications are unable to appropriately represent the land cover of mixed pixels. Fuzzy classification techniques can, however, accommodate the partial and multiple class membership of mixed pixels, and be used to derive an appropriate land cover representation. This is, however, only a partial solution to the mixed pixel problem in supervised image classification. It must be reognised that the land cover on the ground is fuzzy, at the scale of the pixel, and so it is inappropriate to use procedures designed for hard data in the training and testing stages of the classification. Here an approach for land cover classification in which fuzziness is accommodated in all three stages of a supervised classification is presented. Attention focuses on the classification of airborne thematic mapper data with an artificial neural network. Mixed pixels could be accommodated in training the artificial neural network, since the desired output for each training pixel can be specified. A fuzzy land cover representation was derived by outputting the activation level of the network's output units. The activation level of each output unit was significantly correlated with the proportion of the area represented by a pixel which was covered with the class associated with the unit (r>0.88, significant at the 99% level of confidence). Finally, the distance between the fuzzy land cover classification derived from the artificial neural network and the fuzzy ground data was used to illustrate the accuracy of the land cover representation derived. The dangers of hardening the classification output and ground data sets to enable a conventional assessment of classification accuracy are also illustrated; the hardened data sets were over three times more distant from each other than the fuzzy data sets.  相似文献   

5.
The international scientific community recognizes the long-term monitoring of biomass burning as important for global climate change, vegetation disturbance and land cover change research on the Earth's surface. Although high spatial resolution satellite images may offer a more detailed view of land surfaces, their limited area coverage and temporal sampling have restricted their use to local research rather than global monitoring. Low spatial resolution images provide an invaluable source for the detection of burned areas in vegetation cover (scars) at global scale along time. However, the automated burned area mapping algorithm applicable at continental or global scale must be sufficiently robust to accommodate the global variation in burned scar signals. Here, the estimation of the percentage of a pixel area affected by a fire is crucial. In a first step, an empirical method is used which is based on a function between the change in Normalized Difference Vegetation Index (NDVI) and the surface area affected by fire. Next, a new statistical method, based on the Monte Carlo algorithm, is applied to compute probabilities of burned pixels percentages in different neighbourhood conditions.  相似文献   

6.
An assessment of SPOT capability for cartographic applications in Indonesia   总被引:1,自引:0,他引:1  
Abstract

An assessment of the operational cartographic capability of SPOT in Indonesia is presented from the points of view of (1) the size of the smallest distinguishable land cover units through computation of the percentages of pure pixels per unit and dominant unit per pixel and (2) planimetric accuracy. Generally speaking, units larger than 0.16 and 0.05ha can be distinguished with SPOT multispectral (XS) and panchromatic (P) data respectively. For full images, basic manipulations (bilinear transformation or shift, enlargement and rotation) of level-IB SPOT digital data and photographs provide standard deviation accuracies towards local Transverse Mercator (LTM) maps of 2 and 3 pixels, respectively. Due to the poor reliability of most LTM maps, SPOT should undoubtedly be used as a major cartographic data source in Indonesia.  相似文献   

7.
A problem with NOAA AVHRR imagery is that the intrinsic scale of spatial variation in land cover in the U.K. is usually finer than the scale of sampling imposed by the image pixels. The result is that most NOAA AVHRR pixels contain a mixture of land cover types (sub-pixel mixing). Three techniques for mapping the sub-pixel proportions of land cover classes in the New Forest, U.K. were compared: (i) artificial neural networks (ANN); (ii) mixture modelling; and (iii) fuzzy c -means classification. NOAA AVHRR imagery and SPOT HRV imagery, both for 28 June 1994, were obtained. The SPOT HRV images were classified using the maximum likelihood method, and used to derive the 'known' sub-pixel proportions of each land cover class for each NOAA AVHRR pixel. These data were then used to evaluate the predictions made (using the three techniques and the NOAA AVHRR imagery) in terms of the amount of information provided, the accuracy with which that information is provided, and the ease of implementation. The ANN was the most accurate technique, but its successful implementation depended on accurate co-registration and the availability of a training data set. Supervised fuzzy c -means classification was slightly more accurate than mixture modelling.  相似文献   

8.
To carry out functioning and dynamic vegetation studies, a temporal analysis is needed. So far, only data provided by the National Oceanic and Atmospheric Administration (NOAA) satellites with Advanced Very High Resolution Radiometer (AVHRR) sensors offer the required temporal resolution, but their spatial resolution is coarse (1.1 km). But, in many situations, the vegetation cover is heterogeneous and the 1.1 km AVHRR pixel contains several types of land use radiometrically different and is, in fact, a mixed pixel. Thus, the reflectance and consequently deduced parameters (NDVI, LAI, etc.) measured by AVHRR is actually average value and does not represent a value for each vegetation class present in the pixel. The objective is to extract the reflectance of each vegetation class from the mixed pixel using NOAA-AVHRR data and SPOT-HRV data simultaneously which give the proportions of each type of vegetation inside the mixed pixel through a classification map. The paper presents a method for radiometrically unmixing coarse resolution signals through the inversion of linear mixture modelling on heterogeneous regions of natural vegetation (Bidi-Bahn) in Burkina-Faso and in Niger (Hapex site). In a first step, simulated coarse resolution data (NOAA-AVHRR) obtained from the degradation of SPOT images are used to assess the method. In a second step, real NOAA-AVHRR data are used and some elements of validation are given by comparing the results to airborne reflectance measurements.  相似文献   

9.
Conducting quantitative studies on the carbon balance or productivity of oil palm is important in understanding the role of this ecosystem in global climate change. In this study, we evaluated the accuracy of MODIS (Moderate Resolution Imaging Spectroradiometer) annual gross primary productivity (GPP) (the product termed MOD-17) and its upstream products, especially the MODIS land cover product (the product termed MOD-12). We used high-resolution Google Earth images to classify the land cover classes and their percentage cover within each 1 km spatial resolution MODIS pixel. We used field-based annual GPP for 2006 to estimate GPP for each pixel based on percentage cover. Both land cover and GPP were then compared to MODIS land cover and GPP products. The results show that for pure pixels that are 100% covered by mature oil palm trees, the RMSE (root mean square error) between MODIS and field-based annual GPP is 18%, and that this is increased to 27% for pixels containing mostly oil palm. Overall, for an area of about 42 km2 the RMSE is 26%. We conclude that land cover classification (at 1 km resolution) is one of the main factors for the discrepancy between MODIS and field-based GPP. We also conclude that the accuracy of the MODIS GPP product could be improved significantly by using higher-resolution land cover maps.  相似文献   

10.
The problem of how the scale, or spatial resolution, of reflectance data impacts retrievals of vegetation leaf area index (LAI) is addressed in this article. We define the goal of scaling as the process by which it is established that LAI values derived from coarse resolution sensor data equal the arithmetic average of values derived independently from fine resolution sensor data. The increasing probability of land cover mixtures with decreasing resolution is defined as heterogeneity, which is a key concept in scaling studies. The effect of pixel heterogeneity on spectral reflectances and LAI retrievals is investigated with 1-km Advanced Very High Resolution Radiometer (AVHRR) data aggregated to different coarse spatial resolutions. It is shown that LAI retrieval errors at coarse resolution are inversely related to the proportion of the dominant land cover in such pixel. Further, large errors in LAI retrievals are incurred when forests are minority biomes in non-forest pixels compared to when forest biomes are mixed with one another, and vice versa. A physically based scaling with explicit spatial resolution-dependent radiative transfer formulation is developed. The successful application of this theory to scaling LAI retrievals from AVHRR data of different resolutions is demonstrated. These principles underlie our approach to the production and validation of LAI product from the Moderate Resolution Imaging Spectroradiometer (MODIS) and the Multi-angle Imaging Spectroradiometer (MISR) aboard the TERRA platform.  相似文献   

11.
In digital satellite imagery, small fragments of woody vegetation are difficult to detect because they frequently are smaller than the pixel size and are mixed with other land cover classes. A method for detecting subpixel woody vegetation, which analyzes mixture phenomena at the individual pixel level, is presented. This method relies on a moving window to collect training sets for adjacent land cover. In order to locate pixels of interest and to decrease noise, image-derived masks are integrated with the original digital imagery in a geocoded information system. A rule-based scheme is employed to organize relative spatial and spectral information into classification decision procedures. Tests using simulated multispectral and panchromatic SPOT HRV imagery of lowland Britain have shown that the developed method discriminates significantly more woody vegetation than standard multispectral classification.  相似文献   

12.
基于对象级分类的土地覆盖动态变化及趋势分析   总被引:2,自引:0,他引:2  
以广东省东莞市2005~2008年SPOT 5遥感影像为主要数据源,采用对象级分类后比较的变化检测技术,从土地覆盖类型的面积总量、相互转移等方面多层次分析了研究区域4 a土地覆盖的变化情况。在此基础上,利用马尔科夫链模型对该区域未来5 a的土地覆盖动态变化及演变趋势进行了分析和预测,为广东省土地覆盖变化研究提供典型案例分析,以达到全面把握研究区土地覆盖变化规律的目标。结果表明:研究区域的土地覆盖变化基本趋势表现为城镇建设用地总量持续增加以及耕地和园林地面积总量减少,其中城镇建设用地和农业耕地变化幅度较大,其他类型土地变化相对稳定。增加的城镇建设用地主要来源于耕地的人为减少,农业垦殖环境将趋于恶化。研究结果可为研究区合理有效地利用土地以促进土地可持续发展、推进城市化进程奠定决策上的技术基础。  相似文献   

13.
Many techniques intended to estimate land coverage of multiple categories occupied within each pixel from such coarse resolution data have been proposed. However, in traditional unmixing studies with coarse resolution imagery such as Advanced Very High Resolution Radiometer (AVHRR) data, it is assumed that only a few endmembers exist throughout an entire image. Therefore, it is essential to evaluate how well an unmixing method would work for various categories within pixels of coarse resolution images. In this study, the land coverage of eight classes in National Oceanic and Atmospheric Administration (NOAA) AVHRR imagery by using finer resolution Landsat Thematic Mapper (TM) imagery was estimated, and the accuracy of these estimated classes was evaluated. The results suggest that this method may be generally useful for comparing multi-spectral images in space and time.  相似文献   

14.
A hybrid method that incorporates the advantages of supervised and unsupervised approaches as well as hard and soft classifications was proposed for mapping the land use/cover of the Atlanta metropolitan area using Landsat 7 Enhanced Thematic Mapper Plus (ETM+) data. The unsupervised ISODATA clustering method was initially used to segment the image into a large number of clusters of pixels. With reference to ground data based on 1?:?40?000 colour infrared aerial photographs in the form of Digital Orthophoto Quarter Quadrangle (DOQQ), homogeneous clusters were labelled. Clusters that could not be labelled because of mixed pixels were clipped out and subjected to a supervised fuzzy classification. A final land use/cover map was obtained by a union overlay of the two partial land use/cover maps. This map was evaluated by comparing with maps produced using unsupervised ISODATA clustering, supervised fuzzy and supervised maximum likelihood classification methods. It was found that the hybrid approach was slightly better than the unsupervised ISODATA clustering in land use/cover classification accuracy, most probably because of the supervised fuzzy classification, which effectively dealt with the mixed pixel problem in the low-density urban use category of land use/cover. It was suggested that this hybrid approach can be economically implemented in a standard image processing software package to produce land use/cover maps with higher accuracy from satellite images of moderate spatial resolution in a complex urban environment, where both discrete and continuous land cover elements occur side by side.  相似文献   

15.
Information on land cover distribution at regional and global scales has become fundamental for studying global changes affecting ecological and climatic systems. The remote sensing community has responded to this increased interest by improving data quality and methodologies for extracting land cover information. However, in addition to the advantages provided by satellite products, certain limitations exist that need to be objectively quantified and clearly communicated to users so that they can make informed decisions on whether and how land cover products should be used. Accuracy assessment is the procedure used to quantify product quality. Some aspects of accuracy assessment for evaluating four global land cover maps over Canada are discussed in this paper. Attempts are made to quantify limiting factors resulting from the coarse spatial resolution of data used for generating land cover information at regional and global levels. Sub-pixel fractional error matrices are introduced as a more appropriate way for assessing the accuracy of mixed pixels. For classification with coarse spatial resolution data, limitations of the classification method produce a maximum achievable accuracy defined as the average percent fraction of dominant land cover of all pixels in the mapped area. Relationships among spatial resolution, landscape heterogeneity and thematic resolution were studied and reported. Other factors that can affect accuracy, such as misregistration and legend conversion, are also discussed.  相似文献   

16.
ABSTRACT

Due to the instantaneous field-of-view (IFOV) of the sensor and diversity of land cover types, some pixels, usually named mixed pixels, contain more than one land cover type. Soft classification can predict the portion of each land cover type in mixed pixels in the absence of spatial distribution. The spatial distribution information in mixed pixels can be solved by super resolution mapping (SRM). Typically, SRM involves two steps: soft class value estimation, which is similar to the image super resolution of image restoration, and land cover allocation. A new SRM approach utilizes a deep image prior (DIP) strategy combined with a super resolution convolutional neural network (SRCNN) to estimate fine resolution fraction images for each land cover type; then, a simple and efficient classifier is used to allocate subpixel land cover types under the constraint of the generated fine fraction images. The proposed approach can use prior information of input images to update network parameters and no longer require training data. Experiments on three different cases demonstrate that the subpixel classification accuracy of the proposed DIP-based SRM approach is significantly better than the three conventional SRM approaches and a transfer learning-based neural network SRM approach. In addition, the DIP-SRM approach performs very robustly about small-area objects within multiple land cover types and significantly reduces soft classification uncertainty. The results of this paper provide an extension for utilizing SRCNN to address SRM issues in hyperspectral images.  相似文献   

17.
Abstract

Indonesian spatio-temporal cloud cover distribution was quantified to allow planners to forecast probabilities for remote sensing data acquisition. The original data consisted of four randomly chosen Geostationary Meteorological Satellite displays per month from 1981 to 1985, which were analysed with a microcomputer after a 1 °15'pixel size digitization. Iterative interactive factorial analyses combined with a parallelepiped classifier clustered data by grouping pixels with similar profiles. For all classes, pixel profiles were linearly combined to provide a small number of classes with high pixel-class correlations. A 0–7 correlation threshold led to 18 classes for all land areas. Statistics of Landsat and SPOT images, grouped by class, were used to verify, calibrate and improve class profiles. This led to quantified temporal profiles of probability of acquiring remotely-sensed data with a given cloud cover percentage for any Indonesian land and marine area.  相似文献   

18.
Land use/land cover change detection using high spatial resolution remote sensing image is an important content in land monitoring.However,the problems of shadow,image registration,threshold selection,detection method selection and image post-processing are more prominent in high-resolution images compared with that in medium and low resolution images,which result in more difficulties and uncertainties.Change detection of land cover was carried out base on aerial color images between 2009 and 2012 in Xianlin District of Nanjing,and the errors were analyzed in terms of intra-class and inter-class.The results show that the inter-class error accounted for 97.6% in the omission error,and the intra-class error accounted for 87.1% in the commission error.According to the error sources,72.6% of the false negative pixels are derived from the detection method,43.6% of the false positive pixels are come from detection method while 39.7% from radiation inconsistent.The analysis results in the paper provided reference for the development of new change detection algorithm.  相似文献   

19.
Over lands, the cloud detection on remote sensing images is not an easy task, because of the frequent difficulty to distinguish clouds from the underlying landscape, even at a high resolution. Up to now, most high resolution images have been distributed without an associated cloud mask. This situation should change in the near future, thanks to two new satellite missions that will provide optical images combining 3 features: high spatial resolution, high revisit frequency and constant viewing angles. The VENµS (French and Israeli cooperation) mission should be launched in 2012 and the European SENTINEL-2 mission in 2013. Fortunately, two existing satellite missions, FORMOSAT-2 and LANDSAT, enable to simulate the future data of these sensors.Multi-temporal imagery at constant viewing angles provides a new way to discriminate clouded and unclouded pixels, using the relative stability of the earth surface reflectances compared to the quick variations of the reflectance of pixels affected by clouds. In this study, we have used time series of images from FORMOSAT-2 and LANDSAT to develop and test a Multi-Temporal Cloud Detection (MTCD) method. This algorithm combines a detection of a sudden increase of reflectance in the blue wavelength on a pixel by pixel basis, and a test of the linear correlation of pixel neighborhoods taken from couples of images acquired successively.MTCD cloud masks are compared with cloud cover assessments obtained from FORMOSAT-2 and LANDSAT data catalogs. The results show that the MTCD method provides a better discrimination of clouded and unclouded pixels than the usual methods based on thresholds applied to reflectances or reflectance ratios. This method will be used within VENµS level 2 processing and will be proposed for SENTINEL-2 level 2 processing.  相似文献   

20.
Successful land cover change analysis requires selection of an appropriate set of variables for measuring and characterizing change. Coarse spatial resolution satellite sensors offer the advantage of frequent coverage of large areas and this facilitates the monitoring of surface processes. Fine spatial resolution satellite sensors provide reliable land cover information on a local basis. This work examines the ability of several temporal change metrics to detect land cover change in sub-Saharan Africa using remote sensing data collected at a coarse spatial resolution over 16 test sites for which fine spatial resolution data are available. We model change in the fine-resolution data as a function of the coarse spatial resolution metrics without regard to the type of change. Results indicate that coarse spatial resolution temporal metrics (i) relate in a statistically significant way to aggregate changes in land cover, (ii) relate more strongly to fine spatial resolution change metrics when including a measure of surface temperature instead of a vegetation index alone, and (iii) are most effective as land cover change indicators when various metrics are combined in multivariate models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号