首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
使用聚乙烯亚胺(PEI)辅助超滤法处理放射性废水中的铈(Ce).着重研究了pH,聚合物/金属离子质量比(P/M),离子浓度以及操作压力、运行时间对铈离子(Ce3+)截留率和膜渗透通量的影响.研究结果显示:使用聚合物PEI辅助超滤时,最佳实验条件为pH=5,P/M=15;在最适pH和P/M比值下,3种截留分子量超滤膜对Ce3+截留率分别为88.23%(5kDa)、87.01%(10kDa)和89.78%(30kDa);当溶液中存在Na+和Ca2+时,膜对Ce3+的截留率将会降低.膜通量随着操作压力的增加呈线性增加;3种膜通量均随着运行时间的增加有减小的趋势,且下降率顺序为30kDa10kDa5kDa.  相似文献   

2.
Removal of copper ions from aqueous solutions by hazelnut shell   总被引:1,自引:0,他引:1  
There is a great potential of woody hazelnut shell to use in some applications. Sorption studies are one of these. For this reason in this paper, batch adsorption of Cu(2+) ions onto hazelnut shells was studied. The capacity of the adsorption for the removal of copper ions from aqueous solution was investigated under different conditions such as solution contact time (1-360 min), particle size (0-75, 75-150 and 150-200 microm), temperature of solution (25-60 degrees ) and solution pH (3-7). Moreover, zeta potential of particles at different initial pHs (2-10) was measured. The equilibrium data were processed according to Langmuir and Freundlich's models and higher adsorption capacity values towards Cu(2+) ions were shown. The adsorption kinetics was investigated and the best fit was achieved by a second-order equation.  相似文献   

3.
Adsorption isotherms of chromium ions in aqueous solution have been experimentally measured on a granular activated carbon (GAC) and on a char of South African coal (CSAC). Experimental results show that the adsorption capacity for the GAC strongly depends on solution pH and salinity, with maximum values around 7mg/g at neutral pH and low salinity levels. On the contrary, the CSAC shows a smaller adsorption capacity, near 0.3mg/g, which slightly decreases by increasing pH and salinity levels. Chromium adsorption mainly depends on the availability of chromium ions in solution and on the occurrence of redox reactions between the surface groups and the Cr(VI) which lead to the formation of Cr(III). The reduction of Cr(VI) and the following sorption of Cr(III) cations appears as the leading mechanism for chromium uptake on the CSAC. A similar behaviour can be observed for the GAC at pH below 3. On the contrary, at pH>7, the multicomponent competitive adsorption of Cr(VI), OH(-) and Cl(-) has to be considered.  相似文献   

4.
Uptake of trivalent chromium ions from aqueous solutions using kaolinite   总被引:1,自引:0,他引:1  
The sorption of Cr(III) from aqueous solutions on kaolinite has been studied by a batch technique. We have investigated how solution pH, ionic strength and temperature affect this process. The adsorbed amount of chromium ions on kaolinite has increased with increasing pH and temperature when it has decreased with increasing ionic strength. The sorption of Cr(III) on kaolinite is endothermic process in nature. Sorption data have been interpreted in terms of Freundlich and Langmuir equations. The adsorption isotherm was measured experimentally at different conditions, and the experimental data were correlated reasonably well by the adsorption isotherm of the Langmuir, and the isotherm parameters (q(m) and K) have been calculated as well. The enthalpy change for chromium adsorption has been estimated as 7.0 kJ mol(-1). The order of enthalpy of adsorption corresponds to a physical reaction.  相似文献   

5.
Removal of copper ions from aqueous solutions by kaolinite and batch design   总被引:2,自引:0,他引:2  
The removal of copper ions from aqueous solutions by kaolinite was investigated by using a batch-type method. Effects of factors such as pH, ionic strength, temperature, acid-activation and calcination on copper adsorption were investigated. The uptake of copper was determined from changes in concentration as measured by atomic absorption spectrometry. The extent of copper adsorption increased with increasing pH and temperature and with decreasing ionic strength, acid-activation and calcination temperature. The Langmuir and Freundlich adsorption models were used to determine the isotherm parameters associated with the adsorption process. The results provide support for the adsorption of copper ions onto kaolinite. Thermodynamic parameters indicated the endothermic nature of copper adsorption on kaolinite. The experimental results were applied a batch design. As a result, the kaolinite may be used for removal of copper ions from aqueous solutions.  相似文献   

6.
A new sorbent (raw rice bran) was investigated for heavy metal ions removal from aqueous solutions. Rice bran characterisation was carried out in order to identify the functional groups possibly involved in the metal binding. The binding process was studied in terms of binding capacity and metal affinity. The adsorption equilibrium was well described by the Freundlich isotherm model. The negative Gibbs free energy values obtained in this study with rice bran confirm the feasibility of the process and the spontaneous nature of sorption.  相似文献   

7.
聚合物强化陶瓷膜处理低浓度重金属废水   总被引:4,自引:0,他引:4  
采用三种孔径分别为200 nm、50 nm和20 nm的陶瓷膜,以聚丙烯酸为络合剂,含Cu2+废水作为模拟废水,研究聚合物强化膜分离处理低浓度重金属废水的过程.重点考察运行时间、跨膜压差、聚合物/金属离子质量浓度比P∶M值及pH对渗透通量和重金属离子截留率的影响.研究表明,控制合适的条件,陶瓷微滤膜和超滤膜对Cu2+均达到99.8%的截留率,且能得到较高的渗透通量.  相似文献   

8.
The removal of single heavy metals Co and Zn from aqueous solutions using various low-cost adsorbents (Fe(2)O(3), Fe(3)O(4), FeS, steel wool, Mg pellets, Cu pellets, Zn pellets, Al pellets, Fe pellets, coal, and GAC) was investigated. Experiments were performed at different solution pH values (1.5-9) and metal concentrations (0.67-333 mg/l). The effect of solution pH on metal adsorption using Fe(2)O(3) and Fe(3)O(4) was significant, but was negligibly small using steel wool, Mg pellets, Fe pellets, and Al pellets over the entire pH range. Steel wool and Mg pellets were the most excellent adsorbents; for example, the removal of Zn and Co from dilute solutions (<35 mg/l) was greater than 94% at an adsorbent dose of 1.7 g/l. A mass transfer model, which involves two parameters tau (50% breakthrough time) and k (proportionality constant), was proposed to describe breakthrough data of Co in the fixed beds packed with steel wool and Mg pellets. The calculated breakthrough curves agreed well with the measured data (standard deviation < 6%). The value of tau decreased with increasing the flow rate. The effects of flow rates on the value of k and adsorption capacity are discussed.  相似文献   

9.
Adsorption of chromium from aqueous solutions by maple sawdust   总被引:26,自引:0,他引:26  
This paper presents the data for the effect of adsorbent dose, initial sorbate concentration, contact time, and pH on the adsorption of chromium(VI) on maple sawdust. Batch adsorption studies have been carried out. An empirical relationship has been obtained to predict the percentage chromium(VI) removal at any time for known values of sorbent and initial sorbate concentration. Under observed test conditions, the equilibrium adsorption data fits the linear Langmuir and Freundlich isotherms. The experimental result inferred that chelation ion exchange is one of the major adsorption mechanisms for binding metal ions to the maple sawdust.  相似文献   

10.
Removal of nickel from aqueous solutions by sawdust   总被引:3,自引:0,他引:3  
The main parameters influencing Nickel (II) metal sorption on maple sawdust were: initial metal ion concentration, amount of adsorbent, and pH value of solution. The maximum percent metal removal was attained after about 1h. The greatest increase in the rate of adsorption of metal ions on sawdust was observed for pH changes from 2 to 5. An empirical relationship has been obtained to predict the percentage Nickel (II) removal at any time for known values of sorbent and initial sorbate concentration. The experimental results provided evidence for chelation ion exchange as the major adsorption mechanisms for binding metal ions to the sawdust. The adsorbent can be effectively regenerated using 0.1 M strong acid and reused.  相似文献   

11.
Removal of cadmium from aqueous solutions by palygorskite   总被引:2,自引:0,他引:2  
The sorption characteristics of palygorskite with respect to cadmium were studied with the aim of assessing its use in water purification systems. Using a batch method the influence of time (0.5-48 h), initial Cd concentration (5-150 mg/l or 0.044-1.34 mmol/l), ionic strength ([Ca(II)]: 0-0.1 mol/l), pH (3-7) and mineral dose (1-20 g/l) on Cd removal was evaluated. The sorption of Cd on palygorskite appeared as a fast process, with equilibrium being attained within the first half an hour of interaction. This process could be described by the Langmuir model and gave a maximum Cd sorption of 4.54 mg/g. This sorption capacity value was greatly affected by both pH and ionic strength. Thus, Cd sorption decreased as initial pH lessened, especially at proton concentrations similar to those of Cd, at which competition for variable charge sites (silanol groups on palygorskite surface) appeared to be important. High competing electrolyte concentrations also decreased significantly (close to 60%) the amount of sorbed Cd, suggesting a great contribution of replacement of exchange cations in this metal removal by palygorskite. The increase of mineral dose provoked a Cd removal raise; removal values in the range 85-45% were attained for Cd initial concentrations of 10-150 mg/l (0.089-1.34 mmol/l) when a palygorskite dose of 20 g/l was employed. Column studies were also performed in order to estimate the potential of palygorskite to be used in continuous flow purification systems, showing the effectiveness of this mineral to purify down to the legal limit of waste moderate volumes of Cd-containing solutions with a similar concentration (50mg/l or 0.445 mmol/l) to those mostly found in the upper range of concentrations usually present in industrial wastewaters.  相似文献   

12.
The aim of this paper was to investigate the feasibility of the removal of phosphate from aqueous solution by electro-coagulation (EC). The current density (CD) between 2.5 and 10 mA cm(-2) and duration in the limits of 5-20 min were tried for different concentrations. In order to determine optimal operating conditions, the EC process used for the phosphate removal was examined in dependence with the CD, initial concentrations and time. The results of the experimental batch processing showed high effectiveness of the EC method in removing phosphate from aqueous solutions.  相似文献   

13.
Sulphuric acid-treated wheat bran (STWB) was used as an adsorbent to remove Pb(II) ions from aqueous solution. It was observed that the adsorption yield of Pb(II) ions was found to be pH dependent. The equilibrium time for the process was determined as 2h. STWB gave the highest adsorption yield at around pH 6.0. At this pH, adsorption percentage for an initial Pb(II) ions concentration of 100mg/L was found to be 82.8 at 25 degrees C for contact time of 2h. The equilibrium data obtained at different temperatures fitted to the non-linear form of Langmuir, Freundlich and Redlich-Peterson and linear form of Langmuir and Freundlich models. Isotherm constants were calculated and compared for the models used. The maximum adsorption capacity (q(max)) which was obtained linear form of Langmuir model increased from 55.56 to 79.37mg/g with increasing temperature from 25 to 60 degrees C. Similar trend was observed for other isotherm constants related to the adsorption capacity. Linear form of Langmuir isotherm data was evaluated to determine the thermodynamic parameters for the process. Thermodynamic parameters show that adsorption process of Pb(II) ions is an endothermic and more effective process at high temperatures. The pseudo nth order kinetic model was successfully applied to the kinetic data and the order (n) of adsorption reaction was calculated at the range from 1.711 to 1.929. The values of k(ad) were found to be 5.82x10(-4) and 21.81x10(-4)(min(-1))(mg/g)(1-n) at 25 and 60 degrees C, respectively. Activation energy was determined as 29.65kJ/mol for the process. This suggest that the adsorption Pb(II) ions by STWB is chemically controlled.  相似文献   

14.
Removal of lead from aqueous solutions by activated phosphate   总被引:1,自引:0,他引:1  
The potential of using activated phosphate as a new adsorbent for the removal of Pb from aqueous solutions was investigated. The kinetic of lead adsorption and the adsorption process were compared for natural phosphate (NP) and activated phosphate (AP). The results indicate that equilibrium was established in about 1h for NP and 3 h for AP. The effect of the pH was examined in the range 2-6. The maximum removal obtained is between two and three for NP and between three and four for AP. The maximum adsorption capacities at 25 degrees C are 155.04 and 115.34 mg/g for AP and NP, respectively. The effect of temperature has been carried out at 25, 35 and 45 degrees C. The data obtained from adsorption isotherms of lead at different temperatures fit to linear form of Langmuir adsorption equation. The thermodynamic parameters such as enthalpy (DeltaH), free energy (DeltaG) and entropy (DeltaS) were calculated. They show that adsorption of lead on NP and AP is an endothermic process more effective at high temperatures. These results show that AP is a good adsorbent for heavy metals from aqueous solutions and could be used as a purifier for water and wastewater.  相似文献   

15.
In the present study adsorption of Cr(VI) from aqueous solutions onto different agricultural wastes, viz., sugarcane bagasse, maize corn cob and Jatropha oil cake under various experimental conditions has been studied. Effects of adsorbent dosage, Cr(VI) concentration, pH and contact time on the adsorption of hexavalent chromium were investigated. The concentration of chromium in the test solution was determined spectrophotometrically. FT-IR spectra of the adsorbents (before use and after exhaustion) were recorded to explore number and position of the functional groups available for the binding of chromium ions on to studied adsorbents. SEMs of the adsorbents were recorded to explore the morphology of the studied adsorbents. Maximum adsorption was observed in the acidic medium at pH 2 with a contact time of 60min at 250rpm stirring speed. Jatropha oil cake had better adsorption capacity than sugarcane bagasse and maize corn cob under identical experimental conditions. The applicability of the Langmuir and Freundlich adsorption isotherms was tested. The results showed that studied adsorbents can be an attractive low cost alternative for the treatment of wastewaters in batched or stirred mode reactors containing lower concentrations of chromium.  相似文献   

16.
Dolochar, a waste material generated in sponge iron industry, is processed and put to test as an adsorbent for removal of Cd(II) and Cr(VI) ions from aqueous solutions. The dolochar samples were characterised to determine the different phases and their distribution by reflection microscopy. The analysis indicated that the sample consists of metallic iron, fused carbon, and Ca-Mg bearing phases (Ca-Mg-silicate-oxide) along with lots of voids and pores. The fixed carbon (FC) content of the material is 13.8% with a Langmuir surface area of 81.6 m2/g and micropore area of 34.1 m2/g. Batch adsorption experiments have been conducted to study the sorption behaviour of Cd(II) and Cr(VI) ions on dolochar as a function of particle size, contact time, adsorbent dosages, pH and temperature. It is observed that higher pH and temperature enhances sorption of Cd(II) ions. In contrast, the adsorption for Cr(VI) is found to be better in acidic pH in comparison to alkaline media. The equilibrium adsorption isotherm data are tested by applying both Langmuir and Freundlich isotherm models. It is observed that Langmuir isotherm model fitted better compared to the Freundlich model indicating monolayer adsorption. The thermodynamic parameters such as ΔG°, ΔH° and ΔS° indicate the effectiveness of dolochar to remove Cd(II) and Cr(VI) ions from aqueous solution. The kinetics of adsorption is found to better fit to pseudo second order reaction.  相似文献   

17.
Removal of hexavalent chromium from electroplating industry wastewater is obligatory in order to avoid pollution. Batch shaking experiments were carried out to evaluate the adsorption capacity of resins (D301, D314 and D354) in the removal of chromium from aqueous solutions. Varying experimental conditions were studied, including Cr(6+) concentrations, resin amounts, initial pH, contact time and temperatures. The ion-exchange process, which is pH-dependent, indicated the maximum removal of Cr(6+) in the pH range of 1-5 for an initial concentration 100 ppm of Cr(6+). It was found that more than 99.4% of the removal was achieved under optimal conditions. High adsorption rates of chromium for the three resins were observed at the onset, and then plateau values were gradually reached within 30 min. The experimental results obtained at various concentrations (27+/-1 degrees C) showed that the adsorption pattern on the resins have followed Langmuir isotherms and the calculated maximum sorption capacities of D301, D314 and D354 were 152.52, 120.48 and 156.25mg/g, respectively. The thermodynamic parameters (free energy change DeltaG, enthalpy change DeltaS and entropy change DeltaH) for the sorption have been evaluated. It was also found that the adsorption of chromium on these anion-exchange resins follows first-order reversible kinetics.  相似文献   

18.
The removal of Cd(II), Pb(II), Hg(II), Cu(II), Ni(II), Mn(II) and Zn(II) by carbon aerogel has been found to be concentration, pH, contact time, adsorbent dose and temperature dependent. The adsorption parameters were determined using both Langmuir and Freundlich isotherm models. Surface complexation and ion exchange are the major removal mechanisms involved. The adsorption isotherm studies clearly indicated that the adsorptive behaviour of metal ions on carbon aerogel satisfies not only the Langmuir assumptions but also the Freundlich assumptions, i.e. multilayer formation on the surface of the adsorbent with an exponential distribution of site energy. The applicability of the Lagergren kinetic model has also been investigated. Thermodynamic constant (K(ad)), standard free energy (DeltaG(0)), enthalpy (DeltaH(0)) and entropy (DeltaS(0)) were calculated for predicting the nature of adsorption. The results indicate the potential application of this method for effluent treatment in industries and also provide strong evidence to support the adsorption mechanism proposed.  相似文献   

19.
Hu J  Chen C  Zhu X  Wang X 《Journal of hazardous materials》2009,162(2-3):1542-1550
The batch removal of hexavalent chromium (Cr(VI)) from aqueous solution by using oxidized multiwalled carbon nanotubes (MWCNTs) was studied under ambient conditions. The effect of pH, initial concentration of Cr(VI), MWCNT content, contact time and ionic strength on the removal of Cr(VI) was also investigated. The removal was favored at low pH with maximum removal at pH <2. The adsorption kinetics was modeled by first-order reversible kinetics, pseudo-first-order kinetics, pseudo-second-order kinetics, and intraparticle diffusion models, respectively. The rate constants for all these kinetic models were calculated, and the results indicate that pseudo-second-order kinetics model was well suitable to model the kinetic adsorption of Cr(VI). The removal of chromium mainly depends on the occurrence of redox reaction of adsorbed Cr(VI) on the surface of oxidized MWCNTs to the formation of Cr(III), and subsequent the sorption of Cr(III) on MWCNTs appears as the leading mechanism for chromium uptake to MWCNTs. The presence of Cr(III) and Cr(VI) on oxidized MWCNTs was confirmed by the X-ray photoelectron spectroscopic analysis. The application of Langmuir and Freundlich isotherms are applied to fit the adsorption data of Cr(VI). Equilibrium data were well described by the typical Langmuir adsorption isotherm. Overall, the study demonstrated that MWCNTs can effectively remove Cr(VI) from aqueous solution under a wide range of experimental conditions, without significant Cr(III) release.  相似文献   

20.
Organophilic-bentonite, produced by exchange of cetyltrimethylammonium cation for metal cations on the bentonite, was exploited as adsorbent for removal of catechol from aqueous solutions using batch technique. The dependence of removal on various physico-chemical parameters, such as contact time (1–250 min), concentration (0.8–15.3 mmol L−1), temperature (30, 40, 50 ± 1 °C) and pH (5–12) of the adsorptive solution were investigated. Obtained results show that catechol could be removed efficiently (100%) at pH values ≥9.9. The uptake process follows first-order rate kinetics and the equilibrium data fit well into the Langmuir and Freundlich adsorption isotherms over a wide range of concentration (1–10 mmol L−1). The magnitude of change of free energy (ΔG°), enthalpy (ΔH°) and entropy (ΔS°) were determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号