首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The objective of this study was to determine the sensory threshold of off-flavor caused by lipolysis in 2% fat milk and to establish the relationship between increased proteolytic activity in milk and the detection of bitter off-flavor. Homogenized raw milk was held at room temperature for 100 min to allow the native milk lipase to release free fatty acids from the triglycerides. Low and high lipolysis pasteurized milk containing 2% fat were blended together in varying amounts to create a series of six milks with increasing free fatty acid (FFA) concentration for sensory evaluation. Sensory threshold for lipolysis in 2% fat milk was determined by ascending forced-choice procedure, with a series of triangle tests in four sessions with 25 panelists in each session. The group best estimated threshold was the geometric mean of the individual thresholds within each of four panel sessions. The geometric mean best estimated detection thresholds for off-flavors caused by lipolysis in 2% fat milk carried out by native milk lipases were 0.320, 0.322, 0.351, and 0.316 meq of FFA/kg milk for panels 1 to 4, respectively. One third of the panelists detected an off-flavor at or below 0.250 meq of FFA/kg milk. To establish the relationship between proteolysis and detection of off-flavor in pasteurized skim milk, 2800 ppm of CO2 were added to pasteurized skim milk, and it was stored for 27 d at 6 degrees C. Another portion of the same milk was frozen on d 1 at -40 degrees C for use as a low proteolysis portion of the same milk. Decrease in casein as a percentage of true protein (CN/TP) was used as an index of proteolysis. After 27 d at 6 degrees C the milk had a decrease in CN/TP of 4.76% and a standard plate count of 430 cfu/ml. The novel approach of storing milk at 6 degrees C for 27 d with added CO2 blocked microbial growth but allowed proteolytic degradation by milk enzymes to proceed. Before sensory analysis, CO2 was removed by vacuum from the high proteolysis milk and the low proteolysis milk was given the same heat and vacuum. Two triangle tests were performed to determine whether panelists could detect off-flavors caused by proteolysis in milk. The threshold detection of off-flavor in skim milk produced by the action of native milk proteases was less than a decrease of CN/TP of 4.76%, but this value is probably near the threshold.  相似文献   

2.
Milk was collected from eight Holstein cows four times before and four times after intramammary infection with Streptococcus agalactiae. Postinfection milk had significantly higher somatic cell count (SCC) (849,000 cells/ml) than preinfection milk (45,000 cells/ml). High SCC raw milk had more lipolysis and proteolysis than low SCC raw milk. Pasteurized, homogenized, 2% fat milks from pre- and postinfection periods were stored at 5 degrees C and analyzed for lipolysis, proteolysis, microbial quality, and sensory attributes at 1, 7, 14, and 21 d post processing. During refrigerated storage, the average rates of free fatty acid increase (i.e., lipolysis) and casein hydrolysis in high SCC milk were, respectively, three and two times faster than those in low SCC milk. In general, standard plate counts, coliform counts, and psychrotrophic bacterial counts of both the high and low SCC milks remained low (<100,000 cfu/ ml) during 5 degrees C storage. Low SCC milk maintained high organoleptic quality for the entire 21-d shelf-life period. However, for high SCC milk, between 14 and 21 d, sensory defects were detected, which resulted in low overall quality ratings. The sensory defects mainly included rancidity and bitterness and were consistent with higher levels of lipolysis and proteolysis. Hence, mastitis adversely affected the quality of pasteurized fluid milk. It is recommended that the fluid milk industry consider implementation of premium quality payment programs for low SCC milks.  相似文献   

3.
Fresh raw milks, with low (3.1 x 10(4) cell/ml) and high (1.1 x 10(6) cells/ml) somatic cell count (SCC), were standardized to 3.25% fat, and from each a preserved (with 0.02% potassium dichromate) and an unpreserved portion were prepared. Subsamples of each portion were carbonated to contain 0 (control, pH 6.9) and 1500 (pH 6.2) ppm added CO2, and HCl acidified to pH 6.2 Milk pH was measured at 4 degrees C. For the preserved low- and high-SCC milks, two additional carbonation levels, 500 (pH 6.5) and 1000 (pH 6.3) ppm, were prepared. Milks were stored at 4 degrees C and analyzed on d 0, 7, 14, and 21 for microbial count, proteolysis, and lipolysis. The addition of 1500 ppm CO2, but not HCl, effectively delayed microbial growth at 4 degrees C. In general, in both the low- and high-SCC unpreserved milks, there was more proteolysis and lipolysis in control and HCl acidified milks than in milk with 1500 ppm added CO2. Higher levels of proteolysis and lipolysis in the unpreserved milks without added CO2 were related to higher bacteria counts in those milks. In preserved low- and high-SCC milks, microbial growth was inhibited, and proteolysis and lipolysis were caused by endogenous milk enzymes (e.g., plasmin and lipoprotein lipase). Compared with control, both milk with 1500 ppm added CO2 and milk with HCl acidification had less proteolysis. The effect of carbonation or acidification with HCl on proteolysis in preserved milks was more pronounced in the high SCC milk, probably due to its high endogenous protease activity. Plasmin is an alkaline protease and the reduction in milk pH by added CO2 or HCl explained the reduction in proteolysis. No effect of carbonation or acidification of milk on lipolysis was observed in the preserved low- and high-SCC milks. The CO2 addition to raw milk decreased proteolysis via at least two mechanisms: the reduction of microbial proteases due to a reduced microbial growth and the possible reduction of endogenous protease activity due to a lower milk pH. The effect of CO2 on lipolysis was mostly due to a reduced microbial growth. High-quality raw milk (i.e., low initial bacteria count and low SCC) with 1500 ppm added CO2 can be stored at 4 degrees C for 14 d with minimal proteolysis and lipolysis and with standard plate count < 3 x 10(5) cfu/ml.  相似文献   

4.
The goal of this research was to produce homogenized milk containing 2% fat with a refrigerated shelf life of 60 to 90 d using minimum high temperature, short time (HTST) pasteurization in combination with other nonthermal processes. Raw skim milk was microfiltered (MF) using a Tetra Alcross MFS-7 pilot plant (Tetra Pak International SA, Pully, Switzerland) equipped with Membralox ceramic membranes (1.4 μm and surface area of 2.31 m2; Pall Corp., East Hills, NY). The unpasteurized MF skim permeate and each of 3 different cream sources were blended together to achieve three 2% fat milks. Each milk was homogenized (first stage: 17 MPa, second stage: 3 MPa) and HTST pasteurized (73.8°C for 15 s). The pasteurized MF skim permeate and the 3 pasteurized homogenized 2% fat milks (made from different fat sources) were stored at 1.7 and 5.7°C and the standard plate count for each milk was determined weekly over 90 d. When the standard plate count was >20,000 cfu/mL, it was considered the end of shelf life for the purpose of this study. Across 4 replicates, a 4.13 log reduction in bacteria was achieved by MF, and a further 0.53 log reduction was achieved by the combination of MF with HTST pasteurization (73.8°C for 15 s), resulting in a 4.66 log reduction in bacteria for the combined process. No containers of MF skim milk that was pasteurized after MF exceeded 20,000 cfu/mL bacteria count during 90 d of storage at 5.7°C. The 3 different approaches used to reduce the initial bacteria and spore count of each cream source used to make the 2% fat milks did not produce any shelf-life advantage over using cold separated raw cream when starting with excellent quality raw whole milk (i.e., low bacteria count). The combination of MF with HTST pasteurization (73.8°C for 15 s), combined with filling and packaging that was protected from microbial contamination, achieved a refrigerated shelf life of 60 to 90 d at both 1.7 and 5.7°C for 2% fat milks.  相似文献   

5.
The objectives of this study were to determine if flavor differences between 2% fat pasteurized milks with and without naturally enhanced vaccenic acid (VA) and cis-9, trans-11 conjugated linoleic acids (CLA) levels could be detected over the commercial shelf life of the product and to determine if milk with elevated VA and cis-9, trans-11 CLA levels was more susceptible to development of light-induced oxidative flavor defects. Cows were fed a control diet or the same ration supplemented with 2% soybean oil and 1% fish oil (CLA diet). The milk, standardized to 2% fat, was pasteurized, homogenized, and stored in plastic containers at 4 degrees C. Oxidation was induced by exposing half of the containers to light. Testing was conducted at 1, 7, and 14 d postpasteurization. Average cis-9, trans-11 CLA content of the milks from the control and CLA diet groups was 0.52 and 4.74 g/100 g of fatty acids, respectively (8-fold increase). Average VA content of the milk from the control and CLA diet groups was 1.43 and 12.06 g/100 g of fatty acids, respectively (7.5-fold increase). Together, VA plus CLA represented almost 17% of the total milk fatty acids. There was no effect of light exposure on fatty acid composition initially or over the 14-d storage period. Although VA, cis-9, trans-11 CLA, and degree of unsaturation were significantly elevated in the milk from the CLA diet group, untrained panelists were unable to detect flavor differences initially or over time in 15 of 16 triangle test evaluations. Similarly, sensory results indicated no difference in susceptibility to the development of oxidized off-flavors between the milk from the control and CLA diet groups, even when oxidation was induced by light exposure.  相似文献   

6.
Our objective was to determine the effect of commonly used milk preservatives on the accuracy of fat, protein, and lactose content determination in milk by mid-infrared (mid-IR) milk analysis. Two producer raw milks (Holstein and Jersey) and 2 pasteurized modified milks, 1 similar to Holstein milk and 1 similar to Jersey milk were used as the 4 different milk sources. Seven different milk preservative approaches (K2Cr2O7 and 6 different bronopol-based preservatives) and a portion of unpreserved milk for each of the 4 different milks sources were tested for fat B, lactose, protein, and fat A. The experiment was replicated 3 times (28 d each) for a total of 84 d. Two mid-infrared (mid-IR) transmittance milk analyzers (an optical and a virtual filter instrument) were used. A large batch of pilot milk was prepared from pasteurized, homogenized, unpreserved whole milk, split into vials, quick frozen by immersion in liquid nitrogen, and transferred into a −80°C freezer. Pilots were thawed and analyzed on each testing day during the study. Significant increases were observed in all uncorrected readings on the pilot milks over the 84 d of the study, but the increases were gradual and small on each instrument for all components. Results from the study were corrected for these changes. A significant difference in mid-IR fat A readings was observed, whereas no differences were detected for fat B, lactose, or protein between unpreserved and preserved milks containing 0.02% K2Cr2O7. Therefore, K2Cr2O7 has little or no effect on mid-IR test results. All bronopol-based preservative approaches in this study differed in mid-IR test results compared with K2Cr2O7-preserved and unpreserved milks, with the largest effect on protein results. Mid-IR uncorrected readings increased with time of refrigerated storage at 4°C for all preservative approaches, with the largest increase for protein. The rate of increase in uncorrected readings with time of storage was always higher for raw milks than for pasteurized milks, and the stability of instrument zero was lower for raw milks than for pasteurized milks. The largest economic effect of a systematic bias caused by a preservative occurs when the milks used for calibration and routine testing for payment do not contain the same preservative or when calibration milks are preserved and milks for routine testing are unpreserved. These effects can create errors in payment for large dairy processing plants ranging from several hundred thousand to over a million dollars annually.  相似文献   

7.
The changes in milk fat globules and fat globule surface proteins of both low-preheated and high-preheated concentrated milks, which were homogenized at low or high pressure, were examined. The average fat globule size decreased with increasing homogenization pressure. The total surface protein (mg m-2) of concentrated milk increased after homogenization, the extent of the increase being dependent on the temperature and the pressure of homogenization, as well as on the preheat treatment. The concentrates obtained from high-preheated milks had higher surface protein concentration than the concentrates obtained from low-preheated milks after homogenization. Concentrated milks heat treated at 79 degrees C either before or after homogenization had greater amounts of fat globule surface protein than concentrated milks heat treated at 50 or 65 degrees C. This was attributed to the association of whey protein with the native MFGM (milk fat globule membrane) proteins and the adsorbed skim milk proteins. Also, at the same homogenization temperature and pressure, the amount of whey protein on the fat globule surface of the concentrated milk that was heated after homogenization was greater than that of the concentrated milk that was heated before homogenization. The amounts of the major native MFGM proteins did not change during homogenization, indicating that the skim milk proteins did not displace the native MFGM proteins but adsorbed on to the newly formed surface.  相似文献   

8.
Our objective was to determine if lipolysis or proteolysis of calibration sets during shelf life influenced the mid-infrared (MIR) readings or calibration slopes and intercepts. The lipolytic and proteolytic deterioration was measured for 3 modified milk and 3 producer milk calibration sets during storage at 4°C. Modified and producer milk sets were used separately to calibrate an optical filter and virtual filter MIR analyzer. The uncorrected readings and slopes and intercepts of the calibration linear regressions for fat B, fat A, protein, and lactose were determined over 28 d for modified milks and 15 d for producer milks. It was expected that increases in free fatty acid content and decreases in the casein as a percentage of true protein of the calibration milks would have an effect on the MIR uncorrected readings, calibration slopes and intercepts, and MIR predicted readings. However, the influence of lipolysis and proteolysis on uncorrected readings was either not significant, or significant but very small. Likewise, the amount of variation accounted for by day of storage at 4°C of a calibration set on the calibration slopes and intercepts was also very small. Most of the variation in uncorrected readings and calibration slopes and intercepts were due to differences between the optical filter and virtual filter analyzers and differences between the pasteurized modified milk and raw producer milk calibration sets, not due to lipolysis or proteolysis. The combined impact of lipolysis and proteolysis on MIR predicted values was <0.01% in most cases.  相似文献   

9.
10.
Fluid milk consumption in the United States continues to decline. As a result, the level of dietary vitamin D provided by fluid milk in the United States diet has also declined. Undesirable flavor(s)/off flavor(s) in fluid milk can negatively affect milk consumption and consumer product acceptability. The objectives of this study were to identify aroma-active compounds in vitamin concentrates used to fortify fluid milk, and to determine the influence of vitamin A and D fortification on the flavor of milk. The aroma profiles of 14 commercial vitamin concentrates (vitamins A and D), in both oil-soluble and water-dispersible forms, were evaluated by sensory and instrumental volatile compound analyses. Orthonasal thresholds were determined for 8 key aroma-active compounds in skim and whole milk. Six representative vitamin concentrates were selected to fortify skim and 2% fat pasteurized milks (vitamin A at 1,500–3,000 IU/qt, vitamin D at 200–1,200 IU/qt, vitamin A and D at 1,000/200–6,000/1,200 IU/qt). Pasteurized milks were evaluated by sensory and instrumental volatile compound analyses and by consumers. Fat content, vitamin content, and fat globule particle size were also determined. The entire experiment was done in duplicate. Water-dispersible vitamin concentrates had overall higher aroma intensities and more detected aroma-active compounds than oil-soluble vitamin concentrates. Trained panelists and consumers were able to detect flavor differences between skim milks fortified with water-dispersible vitamin A or vitamin A and D, and unfortified skim milks. Consumers were unable to detect flavor differences in oil-soluble fortified milks, but trained panelists documented a faint carrot flavor in oil-soluble fortified skim milks at higher vitamin A concentrations (3,000–6,000 IU). No differences were detected in skim milks fortified with vitamin D, and no differences were detected in any 2% milk. These results demonstrate that vitamin concentrates may contribute to off flavor(s) in fluid milk, especially in skim milk fortified with water-dispersible vitamin concentrates.  相似文献   

11.
As ovine milk production increases in the United States, somatic cell count (SCC) is increasingly used in routine ovine milk testing procedures as an indicator of flock health. Ovine milk was collected from 72 East Friesian-crossbred ewes that were machine milked twice daily. The milk was segregated and categorized into three different SCC groups: < 100,000 (group I); 100,000 to 1,000,000 (group II); and > 1,000,000 cells/ ml (group III). Milk was stored frozen at -19 degrees C for 4 mo. Milk was then thawed at 7 degrees C over a 3-d period before pasteurization and cheese making. Casein (CN) content and CN-to-true protein ratio decreased with increasing SCC group 3.99, 3.97, to 3.72% CN, and 81.43, 79.72, and 79.32% CN to true protein ratio, respectively. Milk fat varied from 5.49, 5.67, and 4.86% in groups I, II, and III, respectively. Hard ewe's milk cheese was made from each of the three different SCC groups using a Manchego cheese manufacturing protocol. As the level of SCC increased, the time required for visual flocculation increased, and it took longer to reach the desired firmness for cutting the coagulum. The fat and moisture contents were lower in the highest SCC cheeses. After 3 mo, total free fatty acids (FFA) contents were significantly higher in the highest SCC cheeses. Butyric and caprylic acids levels were significantly higher in group III cheeses at all stages of ripening. Cheese graders noted rancid or lipase flavor in the highest SCC level cheeses at each of the sampling points, and they also deducted points for more body and textural defects in these cheeses at 6 and 9 mo.  相似文献   

12.
Individual cow samples were collected and preserved with potassium dichromate. Somatic cells counts were determined. Tyrosine value was used as an index of proteolysis. Sixty-six samples ranged in somatic cell count from < 50,000 to > 2,000,000/ml. Initial milk tyrosine values and tyrosine values for milks incubated for 24 h at 37°C showed proteolytic activity increased with increasing somatic cell count. The increase in proteolysis in preserved milk refrigerated for 72 h at 6.7°C was over 1.5 times greater in milks with > 1,000,000 cells/ml than in milks with < 60,000 cells/ml. When preserved milks were laboratory pasteurized, cooled, and stored at 6.7°C for 14 d, some proteolytic activity was detected in milks at all concentrations of somatic cells, and proteolysis increased as somatic cell counts increased. Laboratory-pasteurized samples of milk with various somatic cell counts were also incubated at 30°C for 3 and 6 h to duplicate the proteolysis that could occur during the ripening, coagulation, cutting, and cooking steps of cheese making. Again, the greatest increases in tyrosine were in milks with high somatic cell count. Protease(s) associated with elevated somatic cell counts will damage raw milk quality upon storage, pasteurized fluid milk over shelf-life, and milk during cheese making.  相似文献   

13.
Spores of psychrotrophic Bacillus spp were isolated from 58% of farm bulk tank milks and about 69% of pasteurized milks. Counts of Bacillus spp in about 10% of raw milk samples reached 1 × 105 cfu/ml and above within seven days at 6°C. Psychrotrophic spore counts in pasteurized milks ranged from <0.5 to 170 spores/litre with an average of about 17/1. There was little correlation between the total bacterial count of the raw milk and presence of psychrotrophic Bacillus spores. There was some evidence that the bulk tank itself may be a source of contamination. The spores in pasteurized milk probably were not the result of postpasteurization contamination. The optimum germination temperature for psychrotrophic Bacillus spores was lower than that for spores of mesophilic strains. About 50% of the psychrotrophic Bacillus strains isolated from milk were capable of growth at 2°C.  相似文献   

14.
Effective strategies for extending fluid milk product shelf-life by controlling bacterial growth are of economic interest to the dairy industry. To that end, the effects of addition of l-arginine, Nα-lauroyl ethylester monohydrochloride (LAE) on bacterial numbers in fluid milk products were measured. Specifically, LAE was added (125, 170, or 200 mg/L) to conventionally homogenized and pasteurized 3.25% fat chocolate or unflavored milk products. The treated milks and corresponding untreated controls were held at 6°C and plated on standard plate count agar within 24 h of processing and again at 7, 14, 17, and 21 d of storage. Bacterial counts in all unflavored milk samples treated with LAE remained below the Pasteurized Milk Ordinance limit for grade A pasteurized fluid milk of 4.3 log cfu/mL for the entire 21 d. Bacterial counts in unflavored samples containing 170 and 200 mg/L of LAE were significantly lower than those in the untreated unflavored milk at d 17 and 21 postprocessing. Specifically, bacterial counts in the milk treated with 200 mg/L of LAE were 5.77 log cfu/mL lower than in untreated milk at 21 d postprocessing. Bacterial counts in chocolate milk treated with 200 mg/L of LAE were significantly lower than those in the untreated chocolate milk at d 14, 17, and 21. In chocolate milk treated with 200 mg/L of LAE, bacterial counts were 0.9 log cfu/mL lower than in the untreated milk at 21 d postprocessing. Our results show that addition of LAE to milk can reduce bacterial growth. Addition of LAE is more effective at controlling bacterial growth in unflavored milk than in chocolate milk.  相似文献   

15.
《Food microbiology》1988,5(2):75-87
The effect of storage of raw milk at 2 and 6°C on the quality of pasteurized and UHT milks produced from them has been investigated. There was no difference in shelf-lives of pasteurized milks produced from raw milks which had no obvious physical defects, odours and taints after storage at 2 and 6°C. This was true for pasteurized milks in the presence and absence of post-heat-treatment contamination. However, pasteurized milks of good quality could be produced from more than 80% of raw milk samples which had been stored for up to 5 days at 2°C, but this was only possible with raw milks which had been stored at 6°C for 2 days.Failure rates of experimentally-produced UHT milks were much higher in products manufactured from raw milks stored at 6°C for 4 days than those produced from raw milks stored at 2°C for 4 days. The main cause of failure was due to thermostable bacterial protease associated with high levels of bacterial growth in the raw milks. Other causes of failure included spore-forming bacteria, which may have survived UHT processing, and other organisms probably introduced as contaminants on filling.  相似文献   

16.
Use of microfiltration to improve fluid milk quality   总被引:1,自引:0,他引:1  
The objectives of the research were to determine the growth characteristics of bacteria in commercially pasteurized skim milk as a function of storage temperature; to determine the efficacy of a microfiltration and pasteurization process in reducing the number of total bacteria, spores, and coliforms in skim milk; and to estimate the shelf life of pasteurized microfiltered skim milk as a function of storage temperature. For the first objective, commercially pasteurized skim milk was stored at 0.1, 2.0, 4.2, and 6.1 degrees C. A total bacterial count >20,000 cfu/mL was considered the end of shelf life. Shelf life ranged from 16 d at 6.1 degrees C to 66 d at 0.1 degrees C. Decreasing storage temperature increased lag time and reduced logarithmic growth rate of a mixed microbial population. The increased lag time for the mixed microbial population at a lower storage temperature was the biggest contributor to longer shelf life. For the second objective, raw skim milk was microfiltered at 50 degrees C using a Tetra Alcross M7 Pilot Plant equipped with a ceramic Membralox membrane (pore diameter of 1.4 microm). The 50 degrees C permeate was pasteurized at 72 degrees C for 15 s, and cooled to 6 degrees C. Bacterial counts of raw skim milk were determined by standard plate count. Bacterial counts of microfiltered and pasteurized microfiltered skim milk were determined using a most probable number method. Across 3 trials, bacterial counts of the raw milk were reduced from 2,400, 3,600, and 1,475 cfu/mL to 0.240, 0.918, and 0.240 cfu/mL, respectively, by microfiltration. Bacterial counts in the pasteurized microfiltered skim milk for the 3 trials were 0.005, 0.008, and 0.005 cfu/mL, respectively, demonstrating an average 5.6 log reduction from the raw count due to the combination of microfiltration and pasteurization. For the third objective, pasteurized microfiltered skim milk was stored at each of 4 temperatures (0.1, 2.0, 4.2, and 6.1 degrees C) and the total bacterial count was determined weekly over a 92-d period. At 6 time points in the study, samples were also analyzed for noncasein nitrogen and the decrease in casein as a percentage of true protein was calculated. After 92 d, 50% of samples stored at 6.1 degrees C and 12% of samples stored at 4.2 degrees C exceeded a total bacterial count of 20,000 cfu/mL. No samples stored at 0.1 or 2.0 degrees C reached a detectable bacterial level during the study. When the bacterial count was <1,000 cfu/mL, shelf life was limited because sufficient proteolysis had occurred at 32 d at 6.1 degrees C, 46 d at 4.2 degrees C, 78 d at 2.0 degrees C, and >92 d at 0.1 degrees C to produce a detectable off-flavor in skim milk produced from a raw milk with a 240,000 somatic cell count.  相似文献   

17.
Factors affecting the antilisterial effects of nisin in milk   总被引:3,自引:0,他引:3  
The ability of Listeria monocytogenes to proliferate in milk and the antilisterial activities of nisin are well documented. Although milk fat was reported to reduce the antimicrobial activities of nisin, there is little information on the influence of milk fat on the antilisterial activities of nisin in refrigerated milk, and whether pasteurization and homogenization influence these activities. Fresh, pasteurized, and homogenized milk samples (0.1%, 2.0%, and 3.5% fat) were treated with nisin (0-500 IU/ml) and challenged with 10(4) CFU/ml L. monocytogenes strain Scott A. The organism was most sensitive to nisin in skim milk, showing rapid decline in cell numbers to <10 CFU/ml after 12 days at 5 degrees C following treatment with 250 IU/ml. An initial decline in cell numbers in 2% and whole milk was followed by regrowth of the organism. Loss of the antilisterial effects of nisin was confirmed in homogenized whole milk, whether raw or pasteurized, but not in raw or pasteurized whole milk that was not homogenized. Tween 80, a nonionic emulsifier, partially counteracted the loss of the antilisterial activity of nisin, whereas lecithin, an anionic emulsifier, had no effect. These results demonstrate that the chemical composition and treatment of foods may play an important role in the antilisterial effects of nisin.  相似文献   

18.
The ability of Salmonella Enteritidis to survive in the presence of phage, SJ2, during manufacture, ripening, and storage of Cheddar cheese produced from raw and pasteurized milk was investigated. Raw milk and pasteurized milk were inoculated to contain 10(4) CFU/ml of a luminescent strain of Salmonella Enteritidis (lux) and 10(8) PFU/ml SJ2 phage. The milks were processed into Cheddar cheese following standard procedures. Cheese samples were examined for Salmonella Enteritidis (lux), lactic acid bacteria, molds and yeasts, coliforms, and total counts, while moisture, fat, salt, and pH values were also measured. Salmonella Enteritidis (lux) was enumerated in duplicate samples by surface plating on MacConkey novobiocin agar. Bioluminescent colonies of Salmonella Enteritidis were identified in the NightOwl molecular imager. Samples were taken over a period of 99 days. Counts of Salmonella Enteritidis (lux) decreased by 1 to 2 log cycles in raw and pasteurized milk cheeses made from milk containing phage. In cheeses made from milks to which phage was not added, there was an increase in Salmonella counts of about 1 log cycle. Lower counts of Salmonella Enteritidis (lux) were observed after 24 h in pasteurized milk cheese containing phage compared to Salmonella counts in raw milk cheese with phage. Salmonella Enteritidis (lux) survived in raw milk and pasteurized milk cheese without phage, reaching a final concentration of 10(3) CFU/g after 99 days of storage at 8 degrees C. Salmonella did not survive in pasteurized milk cheese after 89 days in the presence of phage. However, Salmonella counts of approximately 50 CFU/g were observed in raw milk cheese containing phage even after 99 days of storage. In conclusion, this study demonstrates that the addition of phage may be a useful adjunct to reduce the ability of Salmonella to survive in Cheddar cheese made from both raw and pasteurized milk.  相似文献   

19.
Overnight tryptose broth cultures of three L monocytogenes strains were combined, centrifuged, suspended in 200 ml of tryptose phosphate broth, and heated at 56 degrees C for 20 min and at 64 degrees C for 2 min to obtain low-heat-injured (LHI) and high-heat-injured (HHI) cells, respectively, showing >99.6% injury. Flasks containing 200 ml of raw, low-heat-treated (56 degrees C for 20 min), high-heat-treated (64 degrees C for 2 min), pasteurized, and ultrahigh-temperature (UHT) milk were tempered to 31.1 degrees C and inoculated to contain 10(4) to 10(6) CFU/ml of LHI, HHI, or healthy L. monocytogenes cells and a commercial Lactococcus lactis subsp. lactis-Lactococcus lactis subsp. cremoris starter culture at levels of 0.5, 1.0, and 2.0%. Numbers of healthy and injured L. monocytogenes cells and starter organisms were determined using tryptose phosphate agar with or without 4.0% NaCl at selected intervals during 24 h of incubation at 31.1 degrees C. The presence of L. monocytogenes did not adversely affect the growth of the starter culture at any inoculation level. Overall, L. monocytogenes survived the 24-h fermentation period and grew to some extent. In starter-free controls. 76 to 81% of LHI cells and 59 to 69% of HHI cells were repaired after 8 h of incubation, with the lowest repair rates being observed for raw rather than heat-treated or pasteurized milk. Increased injury was observed for healthy L. monocytogenes cells at the 1.0 and 2.0% starter levels, with less injury seen for LHI and HHI cells. Raw and subpasteurized milk allowed less of a decrease in the percentage of injury and also showed higher numbers of injured cells than did pasteurized and UHT milks. These findings may have important implications for the survival of Listeria spp. in certain cheeses that can be prepared from raw or heat-treated milk.  相似文献   

20.
The objective of this study was to evaluate the effects of cheese-making technologies, including homogenization of cream, ultrafiltration, and vacuum condensing of milk, on the retention of salt in Cheddar cheese. One part of pasteurized, separated milk (0.58% fat) was ultrafiltered (55 degrees C, 16.0% protein), another vacuum condensed (12.5% protein), and the third was not concentrated. Cheddar cheese was manufactured using 6 treatments by standardizing unconcentrated milk to a casein-to-fat ratio of 0.74 with unhomogenized 35% fat cream (C), homogenized (6.9 MPa/3.5 MPa) 35% fat cream (CH), ultrafiltered milk and unhomogenized cream (UF), ultrafiltered milk and homogenized cream (UFH), condensed milk and unhomogenized cream (CM), and condensed milk and homogenized cream (CMH). Treatments C and CH had 3.7% fat and 3.5% protein, and the respective values for the remaining treatments were 4.9 and 4.6. The milled curd was dry salted at 2.7% by weight. The salt content of the cheeses receiving homogenization treatment was higher at 1.83 and 1.70% for CH and UFH, respectively, compared with their corresponding controls at 1.33%. The salt content in cheeses from CMH was 1.64% and was not affected by homogenization. Salt retention in C increased from 41.7 to 59.2% in CH, and in UF it increased from 42.5 to 54.5% in UFH. There was a corresponding decrease in the salt content of whey from these cheeses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号