首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Sulfonated poly(phthalazinone ether ketone ketone)s (sPPEKK) and sulfonated poly(arylene ether ketone ketone sulfone)s (sPAEKK) were successfully synthesized by direct polycondensation. The water uptake and swelling of sPPEKK are much less compared with those of sPAEKK, especially in high temperature, which result from the powerful intermolecular hydrogen bonds of sPAEKK, confirmed by variable temperature IR spectra. The maximum operation temperature of proton exchange membranes made of sPPEKK is higher than 80 °C, improving the property of resistance to swelling.  相似文献   

2.
This paper reports the synthesis of four different trifluoromethyl-substituted poly(arylene ether)s on the basis of 2,2-bis(4-hydroxyphenyl)hexafluoropropane (bisphenol AF) and various difluoro- or dinitrobiphenyl or terphenyl monomers in the course of a step-growth polycondensation. Besides a comparison between the polymerisability of the different monomer combinations, a main focus of this work lies on the NMR characterization of these poly(arylene ether)s. Poly(arylene ether)s with sufficiently high number average molecular weights were sulfonated by fuming sulfuric acid or chlorosulfonic acid and investigated in terms of membrane properties relevant for fuel cell applications.  相似文献   

3.
In this study, sulfonated poly(arylene ether sulfone) (SPAES) and sulfonated poly(arylene ether ketone) (SPAEK) were randomly synthesized, employing a presulfonation process. This presulfonation process resulted in a more controlled and reproducible sulfonation level. The respective polymers were prepared using 2,2-Bis(4-hydroxyphenyl) propane at 50% molar ratio, which also provided some membrane elasticity. The resulting polymers, each had 25% of the block containing the sulfonic domains (SPAES A 25 and SPAEK A 25). Better conductive membranes were achieved for the random sulfone polymers than for the random ketone polymers, with values, respectively, of 0.24 and 0.07 S cm−1 at 80°C. The lower proton conductivity from the ketone-based polymer was compensated with very low methanol permeability (0.25 × 10−6 cm2 s−1) and outstanding oxidative stability. The selectivity of both polymer membranes exceeded the reported values for the state-of-the-art Nafion® 117 and other commercially available options. Both polymer membranes, with their unique combination of ionic domains, elastomeric blocks, and resulting morphology, could be viable candidates for fuel cell applications.  相似文献   

4.
A series of sulfonated poly(ether ether ketone ketone)s derived from bisphenol S were prepared by nucleophilic polycondensation. They showed high thermal resistance and good solubility. Most of the polymers were easily cast into tough membranes. The swelling of the membranes (6.02–16.02%) was lower than that of Nafion membranes, and the ion‐exchange capacity of the membranes (0.67–1.44) was higher than that of Nafion membranes. The proton conductivity of the membranes was 0.022–0.125 s/cm. They could be used as proton‐exchange membranes in fuel cells. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 94: 1569–1574, 2004  相似文献   

5.
9,9‐Bis(4‐hydroxyphenyl)xanthene (BHPX), a bisphenol monomer, was synthesized in 82% yield from xanthenone in a one‐pot, two‐step synthetic procedure. Four novel aromatic poly(ether ketone)s (PEKs) based on BHPX were prepared via a nucleophilic aromatic substitution polycondensation with four difluorinated aromatic ketones. The polycondensation proceeded in tetramethylene sulfone in the presence of anhydrous potassium carbonate and afforded the new cardo PEKs in nearly quantitative yields with inherent viscosities of 0.77–0.85 dL/g. High molecular weight PEKs having number‐average molecular weights (Mn's) in the range of 38,900–40,600 g/mol with the polydispersity index ranged from 1.97 to 2.06 are all amorphous and show high glass transition temperatures ranging from 210°C to 254°C, excellent thermal stability, and the temperatures at the 5% weight loss are over 538°C with char yields above 60% at 700°C in nitrogen. These new PEKs are all soluble in polar aprotic solvents such as N‐methyl‐2‐pyrrolidone and N, N′‐dimethylacetamide and could also be dissolved in chloroform and tetrahydrofuran. All the polymers formed transparent, strong, and flexible films with tensile strengths of 78–84 MPa, Young's moduli of 2.54–3.10 GPa, and elongations at break of 14–18 %. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

6.
A series of well‐defined poly(ether ketone ketone) (PEKK)/sodium sulfonated poly(aryl ether ketone) (S‐PAEK) block copolymers of high molecular weights was prepared by direct nucleophilic polymerization of hydroquinone with sodium 5,5′‐carbonylbis(2‐fluorobenzene sulfonate) ( 1 ) and PEKK oligomer ( 2 ). Varying the ratio of 1 to 2 used in polymerization can be used to control the degree of polymer sulfonation, which correspondingly affects the polymer solubility in solvents. Increasing content of 1 in the copolymers, slightly decreases their thermal stability which is nevertheless thermally stable up to 400 °C. Two Tg values, or one broad Tg, were observed in the DSC measurements of the block copolymers, indicating the existence of phase separation, which was further proved by phase‐separated morphologies as shown in atomic force microscopy images. © 2001 Society of Chemical Industry  相似文献   

7.
Precise assignment with 1H, 13C and some two dimensional NMR measurements showed that sulfonation reaction by concentrated sulfuric acid at 30 °C of fluorine-containing poly(arylene ether ketone) copolymers derived from 4,4′-bis(2,4,5,6-pentafluorobenzoyl)diphenyl ether (BPDE) and 9,9-bis(4-hydroxypehnyl)fluorene (HF) and 2,2-bis(4-hydroxyphenyl)-1,1,1,3,3,3-hexafluoropropane (6FBA) yielded quantitative introduction of sulfonic groups onto 2- and 7-positions of fluorene ring in HF unit. A series of sulfonated poly(arylene ether ketone)s with different ion exchange capacity was prepared by using this method with different compositions of HF and 6FBA, and membranes obtained from these polymers were characterized by TGA, moisture and water uptake, proton conductivity, methanol permeability, and Fenton testing. These membranes showed sufficient thermal stability, high proton conductivity at high humidified condition for PEFC and good balance in proton conductivity in water and methanol permeability for DMFC. On the other hand, they showed relatively high swelling by water probably due to weak intermolecular interaction caused by the existence of fluorine atoms in the polymer structure.  相似文献   

8.
Xueya Shang  Min Xiao 《Polymer》2006,47(11):3807-3813
A novel fluorene-containing poly(arylene ether ketone) were synthesized followed by sulfonating into a series of sulfonated fluorene-containing poly(arylene ether ketone)s using chlorosulfonic acid. The sulfonated polymers were thereafter cast into membranes from their solutions. The properties of the ionic exchange capacity, sulfonation degree, water-uptake, mechanical properties, thermal and oxidative stabilities as well as proton conductivities of the membranes were fully investigated. It was found that their proton conductivities increased continuously with increasing testing temperature up to 130 °C at 100% relative humidity. The membrane exhibited a higher proton conductivity and other comprehensive properties for proton exchange membrane than Nafion-117 at 130 °C under same testing conditions.  相似文献   

9.
A series of sulfonated poly(ether sulfone ether ketone ketone) (SPESEKK) with different degree of sulfonation (DS) are prepared by the postsulfonation of PESEKK using chlorosulfonic acid as sulfonating agent and concentrated sulfuric acid as solvent. The chemical structures of the polymers are analyzed by the proton nuclear magnetic resonance. The thermal properties of the SPESEKK show that they are greatly influenced by the DS value and sulfonation time. The water uptake, proton conductivity, and Ion exchange capacity values increase as the sulfonation time increasing. The methanol permeability of the SPESEKK in the range of 7.02 × 10?8 to 4.477 × 10?7 cm2 s?1, is one or two orders of magnitude lower than that of Nafion 115. The morphology of the SPESEKK membranes is investigated by scanning electron microscope. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

10.
A series of covalently and ionically crosslinked sulfonated poly(arylene ether ketone)s (SPAEKs) were prepared via the cyclocondensation reaction of crosslinkable SPAEKs with 3,3′-diaminobenzidine to form quinoxaline groups, where crosslinkable SPAEKs were synthesized by copolymerization of 4,4′-biphenol with 2,6-difluorobenzil, 4,4′-difluorobenzophenone, and 5,5′-carbonyl-bis(2-fluorobenzene sulfonate). The SPAEK membranes had high mechanical properties and the isotropic membrane swelling. The covalent and ionical crosslinking significantly improved the membrane performance, i.e., the crosslinked membranes showed the lower membrane dimensional change, lower methanol permeability, and higher oxidative stability than the corresponding uncrosslinked membranes, with keeping the reasonably high proton conductivity. The crosslinked membrane (CK3) with measured ion exchange capacity of 1.62 mequiv g−1 displayed a reasonably high proton conductivity of 110 mS/cm with water uptake of 33 wt% at 80 °C, and exhibited a low methanol permeability of 1.7 × 10−7 cm2 s−1 for 32 wt% methanol solution at 25 °C. The covalently and ionically crosslinked SPAEK membranes have potential for polymer electrolyte membrane fuel cells and direct methanol fuel cells.  相似文献   

11.
Poly(arylene ether benzonitrile) (PAEBN) was synthesized with 2,6‐dichlorobenzonitrile and biphenol. PAEBNs with various molecular weights (MWs), 1,640,000 and 185,000 g/mol, were synthesized by control of the stoichiometry of the monomers and were blended with sulfonated poly(ether ether ketone) (SPEEK). The effects of MW on the water uptake, swelling, methanol permeability, and proton conductivity of the SPEEK/PAEBN blend membranes were investigated. The molecular mobility of the SPEEK/PAEBN blends was also examined in this study. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

12.
A novel series of sulfonated poly(ether ether ketone ketone)s (SPEEKKs) were prepared by aromatic nucleophilic polycondensation with different ratios of 1,3‐bis(3‐sodium sulfonate‐4‐fluorobenzoyl)benzene to 1,3‐bis(4‐fluorobenzoyl)benzene. 1H‐NMR spectroscopy was used to confirm the degrees of sulfonation (DS) of the polymers. Thermal stabilities of the SPEEKKs in acid form were characterized by thermogravimetric analysis (TGA), which showed that SPEEKKs were excellently thermally stable at high temperatures. SPEEKK polymers can be easily cast into tough membranes. Both of proton conductivity and methanol diffusion coefficient have been tested in this article. Other properties of the SPEEKK membranes were investigated in detail. The results show that the SPEEKK membranes are promising in proton exchange membrane fuel cells (PEMFCs) application. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

13.
In order to develop a novel process for poly(arylene ether ketone)s with high thermal and chemical stability, a series of poly(aylene ether ketone)s containing triazloe moieties were synthesized via the click chemistry of 4,4′-bis(azidomethyl) diphenyl ketone (BADPK) and bisethynyl compounds (BEAE1-5). The resulting polymers were characterized by using IR and 1H NMR techniques. The solubility data showed that samples possessed good solubility in highly polar solvents. Molecular mass of these samples was determined by GPC which indicated they exhibited reasonable molecules weights and relatively small polydispersity. Furthermore, thermal stability of the samples was evaluated using thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC), which indicated that they possessed good thermal stability and high T g (100–140 °C). All the polymers were amorphous confirmed by DSC and X-ray diffraction (WAXD).  相似文献   

14.
A new monomer containing sulfone and imide linkages, bis{4-[4-(p-phenoxyphenylsulfonylphenoxy)benzoyl]-1,2-benzenedioyl}-N,N,N′,N′-4,4′-diaminodiphenyl ether (BPSPBDADPE), was prepared by the Friedel–Crafts reaction of bis(4-chloroformyl-1,2-benzenedioyl)-N,N,N′,N′-4,4′-diaminodiphenyl ether with 4,4′-diphenoxydiphenyl sulfone. Novel copolymers of poly(ether ketone ketone) and poly(ether ketone sulfone imide) were synthesized by electrophilic Friedel–Crafts solution copolycondensation of terephthaloyl chloride with a mixture of DPE and BPSPBDADPE. The polymers were characterized by different physico-chemical techniques. The polymers with 10–25?mol% BPSPBDADPE are semicrystalline and had increased T gs over commercially available PEEK and PEKK (70/30) due to the incorporation of sulfone and imide linkages in the main chains. The polymer IV with 25?mol% BPSPBDADPE had not only high T g of 194?°C but also moderate T m of 338?°C, having good potential for melt processing and exhibited high thermal stability and good resistance to common organic solvents.  相似文献   

15.
Sulfonated poly(arylene ether sulfone)s (S‐PESs) were synthesized from sulfonated 4,4′‐dichlorodiphenylsulfone (S‐DCDPS), 4,4′‐dichlorodiphenylsulfone (DCDPS), and 4,4′‐biphenol through variations in the molar ratio of S‐DCDPS to DCDPS from 10/90 to 40/60. The S‐PES sodium form was characterized with Fourier transform infrared, 1H‐NMR, thermogravimetric analysis, differential scanning calorimetry, and dynamic mechanical analysis, and the intrinsic viscosity and solubility were also evaluated. The sodium form was then subjected to acidification by immersion in 1.5M HCl for 24 h at room temperature, which was followed by washing with deionized water. The S‐PES adhesive properties were measured with single laboratory shear samples with aluminum alloys, and the failure mode was investigated. The synthesized S‐PESs exhibited increased glass‐transition temperatures with increased S‐DCDPS/DCDPS ratios; their acid forms provided much lower glass‐transition temperatures than their sodium forms. In addition, the S‐PES sodium form exhibited a high intrinsic viscosity, which indicated a high molecular weight. The S‐PES acid form exhibited an adhesion strength similar to that of the sodium form, and the single‐lap‐shear strength increased with 10% S‐PES and then decreased with 20, 30, and 40% S‐PES. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 1211–1218, 2004  相似文献   

16.
Dibromomethylene‐containing monomer with a tetrafluorobenzene central unit was synthesized using 2,3,5,6‐tetrafluoro‐1,4‐bis(4‐methylphenoxy)benzene as a starting material. This approach enabled preparation of several fluorinated poly(arylene ether)s containing isomeric fragments, with or without allyl or acetyl side groups, which were prepared by interaction of the synthesized tetrafluorobenzene‐based monomer with various types of hydroxyl‐substituted diphenyl ethers. The structure of the synthesized compounds was determined using Fourier transform infrared, 1H NMR and 19 F NMR spectroscopy techniques. Most of the resulting polyethers were soluble in chlorinated, ether‐type or polar amide solvents. The molecular weight, mechanical and thermal properties of the synthesized fluorinated poly(arylene ether)s were studied depending on the inherent isomery of macromolecular chains and the nature of functional groups. Some ways of functionalization of the prepared fluorinated polyethers with epoxy and triethoxysilyl groups were proposed. © 2015 Society of Chemical Industry  相似文献   

17.
Hydrolytically stable phosphorus-containing monomers, such as 4,4′-bis(fluorophenyl)methylphosphine oxide (BFPMPO), 4,4′-bis(hydroxyphenyl)methylphosphine oxide (BOHPMPO), and 4,4-bis(hydroxyphenyl)phenylphosphine oxide (BOHPPO), were synthesized and used in nucleophilic aromatic substitution poly-condensation to prepare poly(arylene ether phosphine oxide) engineering thermoplastics. The synthesis and characterization of these novel polymers are described. It was determined that by incorporating the phosphine oxide moiety into the polymer backbone, certain properties of the resulting poly(arylene ether) were substantially improved, such as an increase in Tg, thermal stability in air, modulus, and char yield compared with control poly(arylene ether sulfone)s. The high char yields obtained for these polymers in air along with observed intumescence indicates that these materials have improved fire resistance. Preliminary cone calorimetry measurements support this conclusion.  相似文献   

18.
Poly(ether ether ketone)s and poly(ether ether ketone ketone)s containing pendant pentadecyl chains were synthesized by polycondensation of each of the two bisphenol monomers viz, 1,1,1‐[bis(4‐hydroxyphenyl)‐4′‐pentadecylphenyl]ethane and 1,1‐bis(4‐hydroxyphenyl)‐3‐pentadecyl cyclohexane with activated aromatic dihalides namely, 4,4′‐difluorobenzophenone, and 1,3‐bis(4‐fluorobenzoyl)benzene in a solvent mixture of N,N‐dimethylacetamide and toluene, in the presence of anhydrous potassium carbonate. Polymers were isolated as white fibrous materials with inherent viscosities and number average molecular weights in the range 0.70–1.27 dL g?1 and 76,620–1,36,720, respectively. Poly(ether ether ketone)s and poly(ether ether ketone ketone)s were found to be soluble at room temperature in organic solvents such as chloroform, dichloromethane, tetrahydrofuran, and pyridine and could be cast into tough, transparent, and flexible films from their solutions in chloroform. Wide angle X‐ray diffraction patterns exhibited a broad halo at around 2θ = ~ 19° indicating that the polymers containing pentadecyl chains were amorphous in nature. In the small‐angle region, diffuse reflections of a typically layered structures resulting from the packing of pentadecyl side chains were observed. The temperature at 10% weight loss, obtained from TG curves, for poly(ether ether ketone)s and poly(ether ether ketone ketone)s were in the range 416–459°C, indicating their good thermal stability. A substantial drop in glass transition temperatures (68–78°C) was observed for poly(ether ether ketone)s and poly(ether ether ketone ketone)s due to “internal plasticization” effect of flexible pendant pentadecyl chains. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

19.
A new monomer, N,N′‐bis(4‐phenoxybenzoyl)‐m‐phenylenediamine (BPPD), was prepared by condensation of m‐phenylenediamine with 4‐phenoxybenzoyl chloride in N,N‐dimethylacetamide (DMAc). A series of novel poly(ether amide ether ketone) (PEAEK)/poly(ether ketone ketone) (PEKK) copolymers were synthesized by the electrophilic Friedel‐Crafts solution copolycondensation of terephthaloyl chloride (TPC) with a mixture of diphenyl ether (DPE) and BPPD, over a wide range of DPE/BPPD molar ratios, in the presence of anhydrous AlCl3 and N‐methylpyrrolidone (NMP) in 1,2‐dichloroethane (DCE). The influence of reaction conditions on the preparation of copolymers was examined. The copolymers obtained were characterized by different physicochemical techniques. The copolymers with 10–25 mol % BPPD were semicrystalline and had remarkably increased Tgs over commercially available PEEK and PEKK due to the incorporation of amide linkages in the main chains. The copolymers III and IV with 20–25 mol % BPPD had not only high Tgs of 184–188°C, but also moderate Tms of 323–344°C, having good potential for the melt processing. The copolymers III and IV had tensile strengths of 103.7–105.3 MPa, Young's moduli of 3.04–3.11 GPa, and elongations at break of 8–9% and exhibited outstanding thermal stability and good resistance to organic solvents. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

20.
A general method for the preparation of aromatic poly(ether ketone)s containing amide, amide-imide, cyano, oxadiazole, and pyridazine moieties has been developed. Polymerization is based on a ketone-activated halide displacement from amide-, amide-, imide-, cyano-, oxadiazole-, or pyridazine-containing bis(4-fluorobenzoyl) moieties by bisphenoxides in a polar aprotic solvent. The bis(4-fluorobenzoyl) moieties were prepared by reaction of 4-fluorobenzoyl chloride with diphenoxy monomers containing amide, amide-imide, cyano, oxadiazole, or pyridazine groups under modified Friedel–Crafts conditions in methylene chloride. All of the polyether ketones prepared were amorphous and exhibited Tgs ranging from 134 to 218°C. In addition, films of the aromatic polyether ketones displayed good thermal stability and flexibility. The dielectric constants of the films were characterized as a function of relative humidity (RH). © 1995 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号