首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A cytoskeletal extract of pure axoplasm, highly enriched with neurofilaments (ANF), was prepared from the giant axon of the squid. This ANF preparation also contained potent kinase activities which phosphorylated the Mr greater than 400,000 (high molecular weight) and Mr 220,000 squid neurofilament protein subunits. High salt (1 M) extraction of this ANF preparation solubilized most of the neurofilament proteins and kinase activities and gel filtration on an AcA 44 column separated these two components. The neurofilaments eluted in the void volume of the column while the kinase activities eluted in the 17-44-kDa range of the column. Two major kinase activities were measured in this peak of activity. One of these strongly phosphorylated the phosphate acceptor peptide Leu-Arg-Arg-Ala-Ser-Leu-Gly (Kemptide) and was completely inhibited by the selective inhibitor of cAMP-dependent kinase Thr-Thr-Tyr-Ala-Asp-Phe-Ile-Ala-Ser-Gly-Arg-Thr-Gly-Arg-Arg-Asn-Ala-Ile- NH2 (Wiptide). Since addition of cAMP did not stimulate activity, this suggested that this kinase was a free catalytic subunit of cAMP-dependent kinase associated with the neurofilaments. The second kinase activity most effectively phosphorylated alpha-casein, and this activity was not affected by Wiptide. The alpha-casein phosphorylating activity (ANF kinase) was the principal activity responsible for neurofilament protein phosphorylation, and was not inhibited by various inhibitors against second messenger regulated kinases, suggesting it was related to the casein kinase family. Four lines of evidence indicate ANF kinase was similar to casein kinase I. These were: 1) the apparent molecular weight determined by gel filtration and the chromatographic elution profile on phosphocellulose column corresponded to casein kinase I; 2) heparin, an inhibitor of casein kinase II at 2-5 micrograms/ml, stimulated both ANF kinase and purified casein kinase I at these concentrations, while CKI-7, a relatively selective inhibitor of casein kinase I, inhibited ANF kinase in a comparable dose-response fashion; 3) purified casein kinase I strongly phosphorylated both ANF protein subunits (like ANF kinase) whereas casein kinase II was relatively ineffective; and 4) tryptic peptide maps of the HMW and Mr 220,000 neurofilament proteins after phosphorylation by ANF kinase or purified casein kinase I showed similar 32P-peptide patterns.  相似文献   

2.
An analysis of the effects of polyamines on protein phosphorylation in cytosolic fractions of the pupal brain of Manduca sexta showed that spermine elicited an increase in casein phosphorylation in a dose-dependent manner (maximum three- to fourfold at 2.0 mM), whereas spermidine was less effective and putrescine was without effect. In contrast, with phosvitin as the exogenous substrate, higher doses of polyamines, especially spermine, inhibited phosphorylation. High salt conditions abolished the polyamine response. Cytosol protein kinase activity eluted from DEAE-cellulose at 0.2-0.3 M NaCl. This activity was enhanced in the presence of spermine, and inhibited in the presence of heparin (IC50 approximately equal to 30 ng/ml). The enzyme was characterized by a sedimentation coefficient of 6.5S, and a Stokes radius of 49 A, consistent with a Mr of 130,000. Both GTP (Km, 55 microM) and ATP (Km, 34 microM) were utilized as phosphoryl donors (Vmax for ATP being four-fold higher than that observed for GTP). These results indicate the presence in the insect brain of an enzyme very similar to vertebrate casein kinase II. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and autoradiography demonstrated that low concentrations of spermine (100 microM) strongly enhanced the phosphorylation of three high-molecular-weight cytosolic proteins (305,000, 340,000, and 360,000) localized in the insect nervous system.  相似文献   

3.
In previous studies of phosphorylation in squid stellate ganglion neurons, we demonstrated that a specific multimeric phosphorylation complex characterized each cellular compartment. Although the endogenous protein profile of cell body extracts (giant fiber lobe, GFL), as determined by Coomassie staining, was similar to that of axoplasm from the giant axon, in this study we show that the protein phosphorylation profiles are qualitatively different. Whereas many axoplasm proteins were phosphorylated, including most cytoskeletal proteins, virtually all phosphorylation in perikarya was confined to low molecular weight compounds (<6 kDa). Because phosphorylation of exogenous substrates, histone and casein, was equally active in extracts from both compartments, failure to detect endogenous protein phosphorylation in cell bodies was attributed to the presence of more active phosphatases. To further explore the role of phosphatases in these neurons, we studied phosphorylation in the presence of serine/threonine and protein tyrosine phosphatase (PTP) inhibitors. We found that phosphorylation of axonal cytoskeletal proteins was modulated by okadaic acid-sensitive ser/thr phosphatases, whereas cell body phosphorylation was more sensitive to an inhibitor of protein tyrosine phosphatases, such as vanadate. Inhibition of PTPs by vanadate stimulated endogenous phosphorylation of GFL proteins, including cytoskeletal proteins. Protein tyrosine kinase activity was equally stimulated by vanadate in cell body and axonal whole homogenates and Triton X-100 free soluble extracts, but only the Triton X soluble fraction (membrane bound proteins) of the GFL exhibited significant activation in the presence of vanadate, suggesting higher PTP activities in this fraction than in the axon. The data are consistent with the hypothesis that neuronal protein phosphorylation in axons and cell bodies is modulated by different phosphatases associated with compartment-specific multimeric complexes.  相似文献   

4.
The phosphorylation and proteolysis of squid neurofilament proteins by endogenous kinase and calcium-activated protease activities, respectively, were studied. When axoplasm was incubated in the presence of [gamma-32P]ATP, most of the phosphate was incorporated into two neurofilament proteins: a 220-kilodalton (NF-220) and a high-molecular-weight (HMW) protein. When this phosphorylated axoplasm was subjected to endogenous calcium-activated proteolysis, two significant phosphorylated fragments were generated, i.e., a soluble 110K fragment and a pelletable 100K fragment. Immunochemical and other analyses suggest that the pelletable 100K fragment contains the common helical neurofilament rod region and that the soluble 110K protein is the putative side arm of the NF-220. In contrast, neither the HMW or the NF-220 was detected in the region of the stellate ganglion which contains the cell bodies of the giant axon. However, this region did contain a number of proteins that were sensitive to calcium-activated proteolysis and reacted with a monoclonal intermediate filament antibody. This intermediate filament antibody reacts with most of the axoplasmic proteins that copurify with neurofilaments, i.e., in the order of their intermediate filament antibody staining intensity, a 60K, 65K, 220K, and 74K protein. In the cell body preparation, the intermediate filament antibody labeled, in order of their staining intensity, a 65K, 60K, 74K, and 180K protein. In both the axoplasmic and cell body preparations, endogenous calcium-activated proteolysis generated characteristic fragments that could be labeled with the anti-intermediate filament antibody.  相似文献   

5.
A nuclear system for studying nuclear protein phosphorylation is characterized, using as phosphate donor either low levels of [gamma-32P]GTP, low levels of [gamma-32P]ATP, or low levels of labeled ATP plus excess unlabeled GTP. Since nuclear casein kinase II is the only described nuclear protein kinase to use GTP with high affinity, low levels of GTP should specifically assay this enzyme. ATP should measure all kinases, and ATP plus unlabeled GTP should measure all kinases except nuclear casein kinase II (ATP-specific kinases). The results are consistent with these predictions. In contrast with the ATP-specific activity, endogenous phosphorylation with GTP was enhanced by 100 mM NaCl, inhibited by heparin and quercetin, stimulated by polyamines, and did not use exogenous histone as substrate. The GTP- and ATP-specific kinases phosphorylated different subsets of about 20 endogenous polypeptides each. Addition of purified casein kinase II enhanced the GTP-supported phosphorylation of the identical proteins that were phosphorylated by endogenous kinase. These results support the hypothesis that activity measured with GTP is catalyzed by nuclear casein kinase II, though other minor kinases which can use GTP are not ruled out. Preliminary observations with this system suggest that the major nuclear kinases exist in an inhibited state in nuclei, and that the effects of polyamines on nuclear casein kinase II activity are substrate specific. This nuclear system is used to determine if the C-proteins of hnRNP particles, previously shown to be substrates for nuclear casein kinase II in isolated particles, is phosphorylated by GTP in intact nuclei. The results demonstrate that the C-proteins are effectively phosphorylated by GTP, but in addition they are phosphorylated by ATP-specific kinase activity.  相似文献   

6.
A nuclear system for studying nuclear protein phosphorylation is characterized, using as phosphate donor either low levels of [γ-32P]GTP, low levels of [γ-32P]ATP, or low levels of labeled ATP plus excess unlabeled GTP. Since nuclear casein kinase II is the only described nuclear protein kinase to use GTP with high affinity, low levels of GTP should specifically assay this enzyme. ATP should measure all kinases, and ATP plus unlabeled GTP should measure all kinases except nuclear casein kinase II (ATP-specific kinases). The results are consistent with these predictions. In contrast with the ATP-specific activity, endogenous phosphorylation with GTP was enhanced by 100 mM NaCl, inhibited by heparin and quercetin, stimulated by polyamines, and did not use exogenous histone as substrate. The GTP- and ATP-specific kinases phosphorylated different subsets of about 20 endogenous polypeptides each. Addition of purified casein kinase II enhanced the GTP-supported phosphorylation of the identical proteins that were phosphorylated by endogenous kinase. These results support the hypothesis that activity measured with GTP is catalyzed by nuclear casein kinase II, though other minor kinases which can use GTP are not ruled out. Preliminary observations with this system suggest that the major nuclear kinases exist in an inhibited state in nuclei, and that the effects of polyamines on nuclear casein kinase II activity are substrate specific. This nuclear system is used to determine if the C-proteins of hnRNP particles, previously shown to be substrates for nuclear casein kinase II in isolated particles, is phosphorylated by GTP in intact nuclei. The results demonstrate that the C-proteins are effectively phosphorylated by GTP, but in addition they are phosphorylated by ATP-specific kinase activity.  相似文献   

7.
Calcium-activated neutral protease with low affinity for calcium (CANP II, Mr 76,000) can be purified to apparent homogeneity by casein affinity chromatography but contains cyclic-AMP dependent protein kinase activity. CANP II-associated kinase from bovine brain copurifies with protease activity through multiple chromatographic procedures but can be separated by cyclic-AMP affinity chromatography. Isolated protein kinase has subunits of Mr 80,000, 53,000 and 42,000. The kinase preferentially "autophosphorylates" CANP II, but histones, phosphorylase b and neurofilament proteins are also good substrates. The concentrations for half-maximal phosphorylation activity (Km) of cyclic-AMP, (32P)ATP and Mr 150,000 neurofilament protein substrate are 0.2, 6.0 and 0.5 microM, respectively. The specific activity of CANP II associated kinase in phosphorylating neurofilament proteins is intermediate between that of neurofilament- and MAPs 2-associated kinases.  相似文献   

8.
Abstract: Acid protease activity was measured in homogenized stellate ganglion, axoplasm extruded from the squid giant axon, homogenized fin nerves, and in lysed synaptosomes prepared from the optic lobe of the squid. At least two different acid protease classes were distinguished on the bases of their inhibitor profiles. Acid protease activity was present in each of the above tissues except extruded axoplasm. This result suggests that the acid protease activity found in our homogenized finnerves might be located not within the axons but rather in glial cells or extracellular tissue. The absence of acid protease activity in extruded axoplasm indicates that acid proteases are unlikely to play a significant role in the catabolism of intracellular proteins along the length of the axon.  相似文献   

9.
Proteins in the squid giant axon were labeled with 32P by in vitro incubation of isolated axoplasm with radioactive [γ-32P]adenosine triphosphate (ATP) and separated by polyacrylamide sodium dodecyl sulfate gel electrophoresis. The two major phosphorylated regions on the gel had molecular weights of 400 000 and 200 000. These two peaks appear to be neurofilament proteins of squid axoplasm. The same set of proteins was phosphorylated in the axoplasm regardless of whether the [γ-32P]ATP was applied in situ intracellularly or extracelarly. These results suggest that ATP in the extracellular space is, by some ATP-translocation mechanism, utilized in the process of intracellular phosphorylation. Measurements of the apparent influx of ATP across the squid axon membrane yielded results consistent with the view that ATP in the extracellular fluid could be transported into the axoplasm.  相似文献   

10.
The mechanisms and pathways of synthesis of phosphatidylcholine in the giant fibre system of the squid (Loligo vulgaris) have been examined by incubating the stellate ganglion-nerve preparation or its separated compartments in an artificial bathing solution with labelled choline. Other experiments were done by dissecting the whole stellate ganglion into axoplasm, axon sheath, giant fibre lobe, small fibres and ganglion residue, after incubation. The initial rate of choline incorporation into choline phosphoglycerides was severalfold higher in the lobe than in the axon. Higher lipid radioactivity was recovered in the axon sheath as compared to the axoplasm, and in the small fibres as compared to the ganglion residue which contains its cell bodies. The production of phosphorylcholine and CDP-choline in the intact ganglion-nerve preparation during incubation with choline points to the occurrence of the net synthesis pathway for phosphatidylcholine in this material. Base-exchange activity was also observed in the axon and giant fibre lobe preparations in vitro, but no indication can yet be given whether it also takes place in intact preparations. Electrical stimulation and‘depolarizing’conditions enhance choline phosphorylation in the squid axon and lobe, but decrease phosphatidylcholine labelling.  相似文献   

11.
In this study we show that Vitellin (VT) phosphorylation in chorionated oocytes of Rhodnius prolixus is completely inhibited by heparin (10 microg/ml), a classical casein kinase II (CK II) inhibitor. VT phosphorylation is not affected by modulators of cyclic nucleotide-dependent protein kinases such as c-AMP (10 microM), H-8 (1 microM) and H-89 (0.1 microM). We have obtained a 3000-fold VT-free enriched preparation of CK II. Autophosphorylation of this enzyme preparation in the presence of (32)P-ATP demonstrated that it lacks any endogenous substrates. Rhodnius CK II is strongly inhibited by heparin (Ki = 9 nM) and uses ATP (Km = 36 microM) or GTP (Km = 86 microM) as phosphate donors. Incubation of VT with purified Rhodnius CK II and (32)P-ATP led to the incorporation of 2 mols of phosphate/mol VT. However, the total number of phosphorylation sites available can be altered by previous incubation of VT with alkaline phosphatase. These data show that an insect yolk protein contain phosphorylation sites for a cyclic nucleotide-independent protein kinase such as CK II.  相似文献   

12.
In mammalian and squid nervous systems, the phosphorylation of neurofilament proteins (NFs) seems to be topographically regulated. Although NFs and relevant kinases are synthesized in cell bodies, phosphorylation of NFs, particularly in the lys‐ser‐pro (KSP) repeats in NF‐M and NF‐H tail domains, seem to be restricted to axons. To explore the factors regulating the cellular compartmentalization of NF phosphorylation, we separated cell bodies (GFL) from axons in the squid stellate ganglion and compared the kinase activity in the respective lysates. Although total kinase activity was similar in each lysate, the profile of endogenous phosphorylated substrates was strikingly different. Neurofilament protein 220 (NF220), high‐molecular‐weight NF protein (HMW), and tubulin were the principal phosphorylated substrates in axoplasm, while tubulin was the principal GFL phosphorylated substrate, in addition to highly phosphorylated low‐molecular‐weight proteins. Western blot analysis showed that whereas both lysates contained similar kinases and cytoskeletal proteins, phosphorylated NF220 and HMW were completely absent from the GFL lysate. These differences were highlighted by P13suc1 affinity chromatography, which revealed in axoplasm an active multimeric phosphorylation complex(es), enriched in cytoskeletal proteins and kinases; the equivalent P13 GFL complex exhibited six to 20 times less endogenous and exogenous phosphorylation activity, respectively, contained fewer cytoskeletal proteins and kinases, and expressed a qualitatively different cdc2‐like kinase epitope, 34 kDa rather than 49 kDa. Cell bodies and axons share a similar repertoire of molecular consitutents; however, the data suggest that the cytoskeletal/kinase phosphorylation complexes extracted from each cellular compartment by P13 are fundamentally different. © 1999 John Wiley & Sons, Inc. J Neurobiol 40: 89–102, 1999  相似文献   

13.
A highly purified preparation of sperm cytosolic protein kinase was obtained by repeated chromatography with phosphocellulose. The preferred substrate of the enzyme was casein and the activity was not stimulated by added Ca2+, calmodulin, or cAMP. With casein as substrate, both ATP and GTP served as phosphate donors and the activity was inhibited by low micromolar heparin and stimulated by low millimolar spermine and spermidine. These properties are characteristic of casein kinase II from other cells. Endogenous protein substrates of the enzyme in sperm cytosolic fractions and in plasma membranes were demonstrated by incubating the preparations with [gamma-32P]GTP, under conditions unfavorable to other protein kinases, and analyzing the products by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and autoradiography. Spermine greatly enhanced the phosphorylation of three (55, 92, and 106 kDa) proteins in both cytosolic and plasma membrane preparations. Our results indicate that polyamines play a role in modulating the phosphorylation state of proteins in sperm and may further regulate sperm function through this mechanism.  相似文献   

14.
Catalytic properties of a human cytomegalovirus-induced protein kinase   总被引:4,自引:0,他引:4  
Human cytomegalovirus, a DNA virus whose genome contains a fragment of transforming DNA, induces a threonine-serine protein kinase having a molecular mass of 68 kDa (p68). p68 was extracted from cells 96-144 h after infection, and immunoprecipitated with a monoclonal antibody (F6b). Antibody-enzyme complexes were immobilized on heat/formaldehyde-inactivated Staphylococcus aureus. The best substrates for p68 were acidic proteins, phosvitin and casein. Glycogen synthase, phosphorylase alpha and histones were phosphorylated at rates not higher than 1-4% that obtained with phosvitin as substrate. ATP and GTP were equally good substrates of p68. p68 is able to autophosphorylate at the same residues (i.e. threonine and serine) as the protein substrates. Autophosphorylation does not seem to represent an intermediate in substrate phosphorylation. The protein kinase activity of p68 was not enhanced by cAMP, calcium ions, or polyamines like spermine or spermidine. Only at low Mg2+ concentration spermine enhanced by 68% the rate of casein phosphorylation. Heparin, a potent inhibitor of casein kinase II, inhibits p68 activity too, but ten-times higher concentrations were required for the same degree of inhibition. Quercetin, a bioflavonoid, acts as a strong inhibitor of p68 protein kinase activity. The inhibitory effect of quercetin was competitive towards the nucleotide substrate (Ki = 2.8 microM), and non-competitive towards the protein substrate (Ki = 15 microM).  相似文献   

15.
Abstract: The six neurofilament proteins (NFPs) in the goldfish Mauthner axon (M-axon) have molecular sizes of 235, 145, 123, 105, 80, and 60 kDa. To determine if NFPs in the M-axon are phosphorylated, isolated Mauthner axoplasm (M-axoplasm) and a neurofilament-enriched extract (NFE) prepared from M-axoplasm were incubated with 32P, which resulted in the radiolabeling of NFPs as determined by their detection on autoradiograms. Kinase inhibitors directed against cyclic AMP-dependent kinases (PKAs) or cofactor-independent kinases significantly reduced the in vitro phosphorylation of NFPs in NFE, whereas inhibitors directed against protein kinase C did not significantly reduce the in vitro phosphorylation of NFPs in NFE. Experiments using two kinase inhibitors directed against different kinases significantly reduced the in vitro phosphorylation of NFPs in NFE to a greater extent than the reduction produced using any single kinase inhibitor. These data suggest that NFPs in the M-axon are phosphorylated and that the in vitro (and perhaps the in vivo) phosphorylation of NFPs is mediated by PKA and/or cofactor-independent kinases that copurify with NFPs.  相似文献   

16.
Plasmodium berghei-infected murine red cells possess protein kinase activity that is associated with the isolated parasites. Schizonts contain significantly higher levels of this protein kinase than the more immature forms, suggesting a relationship between this enzyme activity and parasite development. Partially purified protein kinase has a Km for ATP of approximately 30 microMs, whereas the Km for GTP is approximately 300 microMs and the substrate preference is phosvitin greater than casein much greater than histone greater than protamine. The Mg2+ optimum is 10-20 mM, and the protein kinase activity is stimulated by the polyamines spermine and spermidine. The flavone, quercetin, inhibits the protein kinase activity in a competitive manner with respect to ATP (Ki approximately 3 microMs), and P chabaudi also has a very similarly regulated protein kinase. Protein kinases from both species are very similar to the type I casein kinase.  相似文献   

17.
Casein kinase II and ornithine decarboxylase were purified from a virally-transformed macrophage-like cell line, RAW264. The addition of casein kinase II to a reaction mixture containing [tau-32P]GTP, Mg++, and ornithine decarboxylase led to the phosphorylation of a 55,000 dalton protein band in the purified preparation of ornithine decarboxylase. Stoichiometric estimates indicated that casein kinase II incorporated 0.15 mole of phosphate per mole of ornithine decarboxylase, which was increased to 0.3 mole/per mole in the presence of spermine. The apparent Km and Vmax values for the casein kinase II-mediated phosphorylation of ornithine decarboxylase were 0.36 microM and 62.5 nmol/min./mg kinase. The addition of spermine to the reaction did not alter the Km but increased the Vmax to 100 nmol/min./mg kinase. The phosphorylation of ornithine decarboxylase by casein kinase II affected neither the rate of maximal ornithine decarboxylase activity nor the affinity of the enzyme for ornithine.  相似文献   

18.
1. A neurofilament-enriched preparation from bovine spinal cord contains endogenous protein kinases that phosphorylate high, middle, and low molecular weight neurofilament subunits (NF-H, NF-M, and NF-L), as well as certain other endogenous and exogenous substrates. 2. Most of this associated kinase activity can be separated from the neurofilament subunits and the bulk of the protein by extraction of the neurofilament preparation with 0.8 M KCl. Assays using specific exogenous substrates, activators, and inhibitors for known kinases reveal significant levels of Ca2(+)-calmodulin-dependent, cyclic nucleotide-dependent, Ca2(+)-phosphatidylserine diglyceride-dependent, and regulator-independent kinase activities in the high-salt extract. 3. Fractionation of the salt extract on a gel filtration column resolves a regulator-independent kinase activity identified by its ability to phosphorylate purified NF-M. This preparation can phosphorylate all three neurofilament proteins either in purified form or in the assembled form, as well as alpha-casein. Only the regulator-independent kinase activity in this fraction is responsible for the phosphorylation of neurofilament proteins. 4. While this partially purified kinase activity does not show a strong substrate specificity between the three neurofilament subunits, the phosphorylation pattern it produces upon incubation with salt-extracted neurofilaments is similar to the regulator-independent phosphorylation pattern found in the original neurofilament preparation and, thus, represents a useful starting point for the further purification of this neurofilament-associated kinase activity.  相似文献   

19.
Two cAMP-independent protein kinases were purified from rat brain neuron chromatin by using extraction with ammonium sulfate with subsequent chromatography on DEAE-Sephadex A-25 and Sephadex G-150. These enzymes were identified as casein kinases NI and NII, respectively. The molecular masses of the proteins as determined by gel filtration are 4500 and 130 Da. Casein kinase NII utilizes ATP (Km = 7.5 mM) and GTP (Km = 8.5 mM) as substrates, while casein kinase NI utilizes only ATP (Km = 6 mM). The activities of the both enzymes are inhibited by Mn2+ and Ca2+, while heparin (1 microgram/ml) inhibits only casein kinase NII. The memory stimulator ethymizol (ethylnorantipheine) increases the activity of casein kinase NII only when brain proteins extracted by 0.35 M NaCl or rat liver HMG-proteins are used as reaction substrates. This substance has no effect on the phosphorylation of casein and histone HI. The role of casein kinase NII of neuronal chromatin in the realization of stimulatory effects of physiologically active substances on RNA synthesis is discussed.  相似文献   

20.
Two nuclear cAMP-independent protein kinases (designated PK-N1 and PK-N2) were purified from rat ventral-prostate and liver. The yield of enzyme units was 4-5% and 7-9% for each enzyme from the prostatic nuclei and liver nuclei, respectively. The average fold purification for prostatic nuclear protein kinase N1 and N2 was 1360 and 1833, respectively. The respective average specific activity of the two enzymes towards casein was 81,585 and 110,000 nmol 32P incorporated/hr/mg of enzyme. Protein kinase N1 comprised one polypeptide of Mr 35,000 which underwent phosphorylation in the presence of Mg2+ + ATP. Protein kinase N2 comprised two polypeptides Mr 40,000 and 30,000 of which only the Mr 30,000 polypeptide was autophosphorylated. Both enzymes were active towards casein, phosvitin, dephosphophosvitin, spermine-binding protein, and non-histone proteins in vitro. Little activity was detected towards histones. Both enzymes were stimulated by 150-200 mM NaCl. MgCl2 requirement varied with the protein substrate but was between 2-4 mM for both enzymes. With dephosphophosvitin as substrate, the apparent Km for ATP for N1 protein kinase was 0.01 mM. GTP did not replace ATP in this reaction. Protein kinase N2 was active in the presence of ATP or GTP. The apparent Km was 0.01 mM for ATP, but 0.1 mM for GTP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号