首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 680 毫秒
1.
Shape memory polyurethane (SMPU) cross-linked by a polyethyleneglycol (PEG) spacer at its side was compared with a linear SMPU and the one randomly cross-linked by glycerol. The SMPU was composed of 4,4′-methylenebis(phenylisocyanate) (MDI), polytetramethyleneglycol-2000 (PTMG-2000), 1,4-butanediol (BD), glycerol, and PEG-200 as a spacer. PEG-200 connected the glycerol hydroxyl groups of two polyurethane chains via the connecting agent, MDI. Tm of the soft segment increased with the increase of cross-linking content. Cross-link density measured by the swelling experiment increased in proportion to the glycerol content. A surprising increase in maximum stress compared to the linear SMPU was attained without any sacrifice in strain. Remarkably, the stress–strain curve revealed that the PEG cross-linked SMPU exhibited a similar behavior and superior tensile mechanical properties to natural rubber. Storage modulus also increased and loss tangent became broad in distribution over the temperature range after PEG cross-linking. Shape recovery rate went up to 96.8%, and shape recovery speed was three times faster than that of linear SMPU.  相似文献   

2.
The effects of the dextrin cross-linking and hard-segment content on the shape-memory property of a polyurethane (PU) block copolymer were investigated. Although dextrin was selected due to its large number of free hydroxyl groups and ubiquitous availability, it is unfortunately insoluble in most organic solvents. The insolubility of dextrin was resolved by attaching a phenyl group onto the dextrin to reduce its hydrophilicity. The phase separations of hard and soft segments were not dependent on the dextrin cross-linking and hard-segment content, as per the results obtained from FTIR, DSC, and XRD analysis. An increased content of chemically cross-linked dextrin increased the maximum stress, but did not decrease the strain for most cases. The cross-linking density increased with increasing dextrin content, as expected. After dextrin cross-linking, the shape recovery rate was generally over 90%, and remained the same after four cyclical tests, while a low shape retention rate was observed for most cases. The best shape-memory effect, considering both the shape recovery and retention rate, was found for a PU consisting of 35 wt.% hard segment and 2 wt.% dextrin. Finally, dextrin was compared to other cross-linking compounds, such as glycerol and pentaerythritol, in this investigation.  相似文献   

3.
以聚己二酸乙二醇-丙二醇酯二醇(PEPA)为软段,分别采用4种二胺扩链剂和3种二异氰酸酯为硬段,通过预聚体法合成了一系列不同硬段结构和含量的聚氨酯脲弹性体,并采用红外光谱、热失重分析、差示扫描量热和拉伸测试等手段,研究了硬段类型及含量对聚氨酯脲性能的影响。结果表明,在软段结构一致,硬段含量接近的情况下,兼具柔性和刚性的硬段有助于提升聚氨酯脲的力学性能、热学性能和微相分离程度。几种二胺扩链剂和二异氰酸酯中,由二苯基甲烷二异氰酸酯(MDI)和4,4'-二氨基二苯醚(ODA)构成的硬段性能最佳;在软、硬段结构一致的情况下,硬段含量对聚氨酯脲性能影响明显。随着硬段含量增加,聚氨酯脲的拉伸强度、微相分离程度先增大后减小,5%热失重温度和断裂伸长率逐渐下降。当PEPA/MDI/ODA摩尔比为1∶0.5∶0.5(硬段含量31.7%),聚氨酯脲拉伸强度达51.5 MPa,断裂伸长率为709%,5%热失重温度为282.7℃,性能最佳。  相似文献   

4.
Eight series of polymers containing 2, 4 toluene di-isocyanate (2, 4 TDI) or 2, 6 TDI, butanediol and 1000 or 2000 molecular weight polyether or polyester soft segment were prepared, and their thermal transitions and structures studied by differential scanning calorimeter, thermo-mechanical analysis, infra-red spectroscopy and X-ray methods in order to obtain the effect of compositional variables on transition behaviour, the extent of phase segregation, and polymer properties. Results indicate that polyester soft segment contributes to greater phase mixing than the polyether, even competing with crystallization of 2, 6 TDI hard segment. This implies that hydrogen bonding of urethane NH to polyester is stronger than to polyether. In weakly phase-segregated samples, hydrogen bonding in the mixed phase raises the T g beyond the value predicted from the copolymer equation and i.r. estimates of the degree of phase mixing. The additional increase in T g can be accounted for by treating hydrogen bonding as cross-links. The results also indicate the effectiveness of increased polyether soft segment molecular weight in promoting phase segregation while less pronounced molecular weight effects occur with polyester soft segment. Thermal behaviour of hydrogen bonding suggests that the cause of hydrogen bond dissociation bears little relation to the state of structural organization.  相似文献   

5.
The glass transition temperature (T g) and melting temperature (T m) of gelatin–starch films were determined using differential scanning calorimetry. Also, the microstructure was observed using scanning electron microscopy (SEM) and the crystalline structure by means of X-ray diffraction (XRD). The effect of starch and glycerol concentrations in films on the thermal properties was evaluated through response surface methodology (RSM). The highest values of T m were obtained at starch concentration intervals of (0.26 to 0.54) %w/w and glycerol concentrations lower than 0.5 (%w/w). On the other hand, the T g values diminished as the glycerol concentration increased. Mathematical models for both transitions were fitted to the experimental data. The micrographs obtained by SEM show the influence of glycerol in the microstructure of the films, being more “gummy” as the content of the plasticizer increased. The XRD patterns of the films demonstrate the existence of some pseudo-crystalline regions in the biodegradable materials.  相似文献   

6.
A commercial thermoplastic polyurethane is identified for which the addition of nanotubes dramatically improves its mechanical properties. Increasing the nanotube content from 0% to 40% results in an increase in modulus, Y, (0.4–2.2 GPa) and stress at 3% strain, σ? = 3%, (10–50 MPa), no significant change in ultimate tensile strength, σB, (≈50 MPa) and decreases in strain at break, ?B, (555–3%) and toughness, T, (177–1 MJ m?3). This variation in properties spans the range from compliant and ductile, like an elastomer, at low mass fractions to stiff and brittle, like a rigid thermoplastic, at high nanotube content. For mid‐range nanotube contents (≈15%) the material behaves like a rigid thermoplastic with large ductility: Y = 1.5 GPa, σ? = 3% = 36 MPa, σB = 55 MPa, ?B = 100% and T = 50 MJ m?3. Analysis suggests that soft polyurethane segments are immobilized by adsorption onto the nanotubes, resulting in large changes in mechanical properties.  相似文献   

7.
Thermal properties of polymer are very important to the understanding of morphology and shape memory effect of shape memory polymers (SMPs). In this article, the thermal properties of shape memory polyurethane nanofibrous nonwoven are investigated systematically from the morphology of nanofibers, crystalline structure, isothermal crystallization behavior, and thermal-dependent strain recovery. The results indicate that the thermal properties of shape memory polyurethane nanofibrous nonwoven are influenced greatly by the electro-spinning and the recrystalline condition. The crystal melting temperature (T m) decreases as the crystallization temperature (T c) decreases, while the relative degree of crystallinity (X c) increases with the decrease of T c within the temperature range of 20 to −30 °C. In particular, when the annealing temperature is higher than 150 °C, the T m shifts to higher value and the X c decreases significantly with the increase of T c. Finally, temperature-dependent strain recovery curves show that the shape memory polyurethane nanofiber tends to have a lower recovery temperature as compared with the SMPU bulk film due to their ultrafine diameter.  相似文献   

8.
The development of high-density magnetic recording media is limited by superparamagnetism in very small ferromagnetic crystals. Hard magnetic materials with strong perpendicular anisotropy offer stability and high recording density. To overcome the difficulty of writing media with a large coercivity, heat-assisted magnetic recording was developed, rapidly heating the media to the Curie temperature Tc before writing, followed by rapid cooling. Requirements are a suitable Tc, coupled with anisotropic thermal conductivity and hard magnetic properties. Here, Rh2CoSb is introduced as a new hard magnet with potential for thin-film magnetic recording. A magnetocrystalline anisotropy of 3.6 MJ m−3 is combined with a saturation magnetization of μ0Ms = 0.52 T at 2 K (2.2 MJ m−3 and 0.44 T at room temperature). The magnetic hardness parameter of 3.7 at room temperature is the highest observed for any rare-earth-free hard magnet. The anisotropy is related to an unquenched orbital moment of 0.42 μB on Co, which is hybridized with neighboring Rh atoms with a large spin–orbit interaction. Moreover, the pronounced temperature dependence of the anisotropy that follows from its Tc of 450 K, together with a thermal conductivity of 20 W m−1 K−1, make Rh2CoSb a candidate for the development of heat-assisted writing with a recording density in excess of 10 Tb in.−2.  相似文献   

9.
Biodegradable PHB–PEG multi-block polyurethane copolymers comprising PHB blocks (Mn: 1100, 1740 and 3240) and PEG blocks (Mn: 1960, 3250, 4150 or 7950) were synthesized followed by characterization by GPC, 1H NMR, and FT-IR. The PHB contents ranged from 9 to 62% by weight. The copolymers displayed improved thermal stabilities compared with their respective precursors. The morphological structures of the copolymers were studied by FT-IR, DSC and XRD. FT-IR revealed the existence of amorphous and crystalline phases of PHB. Both DSC and XRD analyses showed that separate crystalline phases are formed by PEG and PHB blocks in the copolymers. Upon annealing, the melting transition temperature (Tm), melting enthalpy (ΔHm) and the fractional crystallinity (Xc) of the PEG block increased when the length of PEG incorporated into the copolymer increased. These values were higher when the PHB block length is shorter as the shorter PHB chain does not disrupt the crystallization of PEG as much as the longer PHB chain. A similar disruptive effect on the crystallization of PHB segments was observed by varying PEG chain lengths but the effect is less pronounced compared with the PEG segments. A comparison of the swelling properties of the poly(ester urethane)s showed that the length and crystalline properties of the PHB block significantly affects the water uptake properties of the copolymers. The crystalline properties and the water uptake capacities of the copolymers could be fine-tuned by consideration of the length of the PHB and PEG block incorporated. The results of the cytotoxicity tests demonstrated that the poly(PHB/PEG) urethanes were non-cytotoxic and could potentially be used for biomedical purposes.  相似文献   

10.
研究以双端羧基尼龙1212为硬段,以双端氨基聚乙二醇为软段的聚酰胺-聚醚分嵌段共聚物的结晶行为。用偏光显微镜、差示扫描量热法研究了不同组成共聚物的结晶形态、熔融结晶温度的影响。PLM观察到共聚物的结晶形态随硬段分子量的增大趋于完善,软硬段相容性随软硬段分子量增大而变差;DSC扫描表明共聚物的熔融温度随着硬段分子量增大而增大,软硬段分子量较大时软硬段相容性较差。  相似文献   

11.
Two poly (tetramethylene glycols) (PTMG), molecular weight of 650 and 2000, with 4,4-diphenylmethane diisocyanate (MDI) and poly(4, 4-diphenylsulphone terephthalamide) (PSA) prepolymer were polycondensated. Four different molar ratios of PTMG, MDI and PSA prepolymer were synthesized to form eight PU-PSA block copolymers. The mechanical properties including stress-strain and stress-relaxation measurements of each copolymer were discussed. The determined values of Young's modulus E, Mooney-Rivlin relation elastic parameters C1 and C2, relaxation moduli E1(0) and E2(0), relaxation time 1 and 2 were used to estimate the effect of hard segment and soft segment domains on the mechanical behaviour of copolymers. It was found that PU-PSA block copolymers apparently displayed elastic properties, especially using the molecular weight 2000 of PTMG which exhibited more elastic behaviour.  相似文献   

12.
《材料科学技术学报》2019,35(7):1491-1498
Waterborne polyurethane (WPU) dispersions have gained attention towards environmentally-friendly synthesis. In this article, a series of waterborne polyurethane emulsions was successfully synthesized and extensively characterized in terms of thermal, mechanical properties, hydrophilic behavior and morphology. Snow was chosen as dispersant instead of commonly used water. Preparation parameters such as intrinsic properties and molecular weight of polyols were discussed systematically. A chain structure was confirmed by Fourier transform infrared (FT-IR) spectroscopy. When comparing the nature of the polyols (PPG, PEG and PNA, 2000 g/mol) of this study, as-synthesized polyether waterborne polyurethane provided higher solid content, viscosity and water-resistance. However, polyester waterborne polyurethane performed differently and it exhibited higher thermal stability and crystallinity. When comparing the samples (WPU-N210, WPU-N220, WPU-N230 and WPU-N240) with different molecular weight of the same polyol (PPG) used as soft segment, the emulsion WPU-N220 with molecular weight of 2000 g/mol PPG provided the highest solid content and lowest viscosity. It was observed that particle size was uniform and highly dispersed for all samples from TEM images. Thermogravimetric, differential scanning calorimetry (DSC) and X-ray diffraction results demonstrated that the emulsion WPU-N230 with molecular weight of 3000 g/mol PPG possessed higher thermal stability and crystallinity than the other samples. The reason was that the Tg and thermal stability were increased with increasing molecular weight. When molecular weight increased, the arrangement of soft segment became more regular and so did the regularity of the molecular chains. This work demonstrated that different polyols as soft segment applied could lead to great differences in the structure and property of the resulting WPU.  相似文献   

13.
Three-arm polyamide 6-polyurethane (PA 6-PU) block copolymers were synthesized using ε-caprolactam as a monomer, caprolactam sodium as a catalyst, and a three-arm carbamyl caprolactam terminated polyurethane (PU) prepolymer as macroactivator. The three-arm PU prepolymer was formed from polyether glycerol (PPG) and diphenyl methane-4,4′ diisocyanate (MDI). The block copolymers were obtained using the monomer casting process (MC) of ε-caprolactam at different content of three-arm PU prepolymer (5–20%). In increasing the content of the soft phase, in Fourier transform infrared (FTIR), a displacement was observed in the band at 1637 cm−1, which is assigned to the amide I of polyamide 6 (PA 6) shifted to a higher wavenumber. This suggested an interaction between the amide group of the PA 6 and the urethane group of the PU. The effects of the PU prepolymer content on the mechanical properties of the block copolymers were investigated. The results showed that the impact strength of the block copolymers at 25 °C and −50 °C temperature could be significantly improved. The crystallization and melting behaviors, structure and thermal properties and morphological characteristic of the block copolymers were studied using the different techniques such as differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), dynamic mechanical analysis (DMTA) and scanning electronic microscopy (SEM).  相似文献   

14.
The surface tension and viscosity of liquid niobium, zirconium, and titanium have been determined by the oscillation drop technique using a vacuum electrostatic levitation furnace. These properties are reported over wide temperature ranges, covering both superheated and undercooled liquid. For niobium, the surface tension can be expressed as (T)=1.937×103–0.199(TT m) (mN·m–1) with T m=2742 K and the viscosity as (T)=4.50–5.62×10–3(TT m) (mPa·s), over the 2320 to 2915 K temperature range. Similarly, over the 1800 to 2400 K temperature range, the surface tension of zirconium is represented as (T)=1.500×103–0.111(TT m) (mN·m–1) and the viscosity as (T)=4.74–4.97 ×10–3(TT m) (mPa·s) where T m=2128 K. For titanium (T m=1943 K), these properties can be expressed, respectively, as (T)=1.557×103–0.156(TT m) (mN·m–1) and (T)=4.42–6.67×10–3(TT m) (mPa·s) over the temperature range of 1750 to 2050 K.  相似文献   

15.
Three water-based polyurethane dispersions (PUD) were synthesized by modified dispersing procedure using polycarbonate diol (PCD), isophorone diisocyanate (IPDI), dimethylolpropionic acid (DMPA), triethylamine (TEA) and ethylenediamine (EDA). The ionic group content in the polyurethane-ionomer structure was varied by changing the amount of the internal emulsifier, DMPA (4.5, 7.5 and 10 wt.% to the prepolymer weight). The expected structures of obtained materials were confirmed by FTIR spectroscopy. The effect of the DMPA content on the thermal properties of polyurethane films was measured by TGA, DTA, DSC and DMTA methods. Increased DMPA amounts result in the higher hard segment contents and in the increase of the weight loss corresponding to the degradation of the hard segments. The reduction of hard segment content led to the elevated temperature of decomposition and to the decrease of the glass transition temperature and thermoplasticity. The atomic force microscopy (AFM), results indicated that phase separation between hard and soft segment of PUD with higher DMPA content is more significant than of PUD with lower DMPA content. The physico-mechanical properties, such as hardness, adhesion test and gloss of the dried films were also determined considering the effect of DMPA content on coating properties.  相似文献   

16.
Reinforcement of flexible nylon-6 by using poly (m-phenylene isophthalamide) PmIA (Nomex) using (MDI) 4,4-diphenylene methane diisocyanate as a chain extender was studied. Observation by scanning electron microscopy showed that the multiblock copolymer had a homogeneous texture. From the differential scanning calorimetry measurements, the multiblock copolymers were shown to have only one melting point, T m, which is higher than that of nylon-6. The wide-angle X-ray diffraction pattern shows that nylon-6 has two diffraction peaks at 2=20° and 23.8°. However, the multiblock copolymer has only one peak at 2=20°, indicating a different crystal structure of multiblock copolymers. The copolymers appear to have a significant reinforcing effect on the mechanical properties.  相似文献   

17.
Abstract

The processing, structures and phase constitutions and the magnetic properties of nanocomposite hard magnetic alloys are reviewed. The emphasis is on rare earth (RE)–iron–boron alloys in which the hard magnetic phase RE2Fe14B is intermixed with one or more soft magnetic phases. Processing–structure–property relationships are the principal focus, in particular, the role of the hard and soft nanocrystallite dimensions in promoting intergrain ferromagnetic exchange coupling and the consequent enhancement of remanent magnetisation and the technologically important maximum energy density. The powder processing, chill block melt spinning, mechanical alloying and thin film deposition routes to develop nanocrystalline and nanocomposite structures are reviewed. The coercivity mechanism in ultrafine grained alloys and the influence of crystallite dimensions are discussed, as are the effects on intrinsic and extrinsic properties of RE substitutions, replacement of iron by other transition metals and enrichment of the boron content. Exchange enhancements in Sm–Co based nanocomposite bulk alloys and in nanoscale FePt/α-Fe composite thin films are briefly considered, together with thin film materials involving exchange coupling between ferromagnetic and antiferromagnetic phases, in core–shell type structures of transition metal compounds surrounded by oxides and in mechanically alloyed materials. The processing and magnetic properties of bonded magnets based on nanocrystalline/nanocomposite REFeB alloys are discussed. The possibility of producing anisotropic hard/soft composites with properties approaching the theoretical maximum is considered and the extent to which this goal has been realised for fully dense alloys identified.  相似文献   

18.
The deformation characteristics of indium phosphide (InP) single crystals under uniaxial compression have been examined as a function of strain rate, temperature and orientation. It has been shown that at temperatures below 0.55T m (T m=melting point; 1335 K) the material fractures in a brittle manner whereas at higher temperatures, within the range 0.55 to 0.71T m, plastic deformation occurs by both slip and deformation twinning; above 0.71T m, slip alone is the operative deformation mechanism. The observed operative slip systems are of the type {1 1 1} 0 1 1 which are characteristic of most Group IIIb-Group Vb compounds. Deformation twinning occurs predominantly on {1 1 1} planes but some activity is also observed on planes of the type {3 4 5}.  相似文献   

19.
Nanocomposites based on cellulose acetate, a commercial organoclay (Cloisite30B), triethyl citrate and variable content of antimicrobial agents (thymol and cinnamaldehyde), were obtained using a solution casting technique. The properties of the nanocomposites were evaluated using X‐ray diffraction, differential scanning calorimetry, thermogravimetric analysis, mechanical (modulus of elasticity, tensile strength and elongation at break), scanning electronic microscopy, global migration and microbiological testing. A reduction of glass transition (Tg), melting temperature (Tm) and melting enthalpy (?Hm) was also observed when the content of thymol and cinnamaldehyde was increased in the cellulose acetate nanocomposites. In contrast, thermal stability, mechanical performance and morphology of material did not show important differences when the content was modified. Results of global migration were dependent of the kind of simulant used. Finally, the antimicrobial activity was dependent of the essential oil used and its content inside the nanocomposite. An important effect of organoclay on the antimicrobial activity was also observed. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
Thermophysical properties of molten germanium have been measured using the high-temperature electrostatic levitator at the Jet Propulsion Laboratory. Measured properties include the density, the thermal expansivity, the hemispherical total emissivity, the constant-pressure specific heat capacity, the surface tension, and the electrical resistivity. The measured density can be expressed by liq=5.67×103–0.542 (TT m ) kg·m–3 from 1150 to 1400 K with T m=1211.3 K, the volume expansion coefficient by =0.9656×10–4 K–1, and the hemispherical total emissivity at the melting temperature by T, liq(T m)=0.17. Assuming constant T, liq(T)=0.17 in the liquid range that has been investigated, the constant-pressure specific heat was evaluated as a function of temperature. The surface tension over the same temperature range can be expressed by (T)=583–0.08(TT m) mN·m–1 and the temperature dependence of the electrical resistivity, when r liq(T m)=60·cm is used as a reference point, can be expressed by r e, liq(T)=60+1.18×10–2(T–1211.3)·cm. The thermal conductivity, which was determined from the resistivity data using the Wiedemann–Franz–Lorenz law, is given by liq(T )=49.43+2.90×10–2(TT m) W·m–1·K–1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号