首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到13条相似文献,搜索用时 19 毫秒
1.
    
Cold sintering process (CSP) is a new method to prepare ceramics under quite low temperature. In this work, two-step CSP under different pressures was employed to prepare (K0.5Na0.5)NbO3 (KNN) ceramics. The density of KNN green pellets can be raised by enhancing the pressure of second-step CSP. Energy-dispersive spectroscopy reveals the composition segregation of A-site cations in large grains. The dissolution rate of K+ in an aqueous medium is faster than Na+, and high pressure can accelerate K+ dissolution, resulting in more Na+ in some grains. Besides, the diffusion rate of Na+ in grains is better than K+, which promote the grains growth. Finally, the piezoelectric property is improved even with low ceramic density due to the larger grains, which possess the higher performance composition. This result demonstrates that the pressure and inhomogeneous dissolution of alkali metal ions among CSP play an important role in grain growth and piezoelectric enhancement.  相似文献   

2.
Multilayer pulsed power ceramic capacitors require that dielectric ceramics possess not only large recoverable energy storage density (Wrec) but also low sintering temperature (<950°C) for using the inexpensive metals as the electrodes. However, lead‐free bulk ceramics usually show low Wrec (<2 J/cm3) and high sintering temperature (>1150°C), limiting their applications in multilayer pulsed power ceramic capacitors. In this work, large Wrec (~4.02 J/cm3 at 400 kV/cm) and low sintering temperature (940°C) are simultaneously achieved in 0.9(K0.5Na0.5)NbO3–0.1Bi(Mg2/3Nb1/3)O3–1.0 mol% CuO ceramics prepared using transition liquid phase sintering. Wrec of 4.02 J/cm3 is 2‐3 times as large as the reported value of other (Bi0.5Na0.5)TiO3 and BaTiO3‐based lead‐free bulk ceramics. The results reveal that 0.9(K0.5Na0.5)NbO3–0.1Bi(Mg2/3Nb1/3)O3–1.0 mol% CuO ceramics are promising candidates for fabricating multilayer pulsed power ceramic capacitors.  相似文献   

3.
    
Dense K0.5Na0.5NbO3 lead-free ceramics were successfully fabricated by combining cold sintering process (CSP) with annealing in air atmosphere or low pO2 atmosphere. Acetic acid was used as transition liquid. By optimizing the liquid content and pressure during CSP, the CSP samples with relative densities 74.2% were obtained with adding 15 wt% acetic acid under 800 MPa. The CSP samples were then annealed in air atmosphere between 1000 and 1100°C. The ceramics annealed at 1050°C exhibit excellent electrical properties with piezoelectric constant d33 = 125 pC/N, dielectric constant εr = 509, dielectric loss tan δ = 0.04, and remanent polarization Pr = 38.17 μC/cm2. Additionally, the mixture of K0.5Na0.5NbO3 and base metal Ni powders was also cold-sintered and then annealed in the low pO2 atmospheres in order to detect whether Ni was oxidized or not. The optimized low pO2 atmospheres to protect the Ni from oxidation are pO2 = 10−10 atm followed by reoxidizing in pO2 = 10−6 atm. The K0.5Na0.5NbO3 fabricated by CSP with annealing in the optimized low pO2 atmospheres exhibits comparable electrical properties of the ceramics annealed in air atmosphere, providing an optional approach for using base metals as electrodes.  相似文献   

4.
Here, the composition‐induced phase transition and enhanced electrical properties were investigated in terms of lead‐free {[Bi0.5(Na0.82?xK0.18Lix)0.5]1?ySry}TiO3 (BNKLST‐x/y, x=0‐0.175 and y=0‐0.125) ceramics. The rhombohedral and tetragonal phase boundary can be constructed, and then the enhancement of piezoelectric properties (d33~271 pC/N and kp~0.38) can be observed for x=0.10 and y=0.05, which is superior to most reported results in polycrystalline BNT‐based ceramics. In particular, a fatigue‐free behavior after 106 polarization switching cycles was shown in the BNKLST‐0.10/0.05 ceramics due to the reversible field‐induced phase transition, and a slight decrease in d33 (~4.5%) was also shown. More importantly, the general model of electric field, temperature, and composition‐induced phase transition was employed to explain the enhancement of piezoelectric and fatigue properties. We believe that the composition design of this system can promote the development of bismuth sodium titanate lead‐free ceramics.  相似文献   

5.
The crystal structure, electromechanical properties, and electrocaloric effect (ECE) in novel lead‐free (Bi0.5K0.5)TiO3‐La(Mg0.5Ti0.5)O3 ceramics were investigated. A morphotropic phase boundary (MPB) between the tetragonal and pseudocubic phase was found at x = 0.01‐0.02. In addition, the relaxor properties were enhanced with increasing the La(Mg0.5Ti0.5)O3 content. In situ high‐temperature X‐ray diffraction patterns and Raman spectra were characterized to elucidate the phase transition behavior. The enhanced ECE (ΔT = 1.19 K) and piezoelectric coefficient (d33 = 103 pC/N) were obtained for x = 0.01 at room temperature. Meanwhile, the temperature stability of the ECE was considered to be related to the high depolarization temperature and relaxor characteristics of the Bi0.5K0.5TiO3‐based ceramics. The above results suggest that the piezoelectric and ECE properties can be simultaneously enhanced by establishing an MPB. These results also demonstrate the great potential of the studied systems for solid‐state cooling applications and piezoelectric‐based devices.  相似文献   

6.
The electrostriction and strain response of lead‐free Bi0.5Na0.5TiO3–BaTiO3 piezoceramics with La and Nb [(Bi0.47Na0.47Ba0.06)1?xLaxTi1?yNbyO3] were modified by optimizing the depolarization temperature. The influences of La and Nb on their phase structure and electrical properties were systematically investigated. All the ceramics exhibited a pseudocubic phase, which is independent of the addition of La and Nb. The strain values increased gradually with the addition of La, and a high strain of ~0.5% (80 kV/cm) was attained without any remnant strain when the compositions had a value of x = 0.015. Instead, the piezoelectric constant d33 dropped down ~20 pC/N due to the shift of the Td (or Tf?r) to room temperature. Interestingly, by establishing the relationship between Td and strain values, it should be feasible to optimize the strain property of Bi0.5Na0.5TiO3 (BNT)‐based ceramics by regulating Td to ambient temperature. In addition, a very high electrostriction coefficient Q33 of ~0.0758 m4 C?2 can be found under high temperatures of 125 and 150°C. We believe that the strain and electrostriction behavior of BNT‐based ceramics can be well modified by the modulation of depolarization temperature.  相似文献   

7.
(100)C‐oriented Na0.5Bi0.5‐xSmxTiO3 (NBST) lead‐free ferroelectric thin films were prepared on Pt/Ti/SiO2/Si substrates by chemical solution deposition method, and their microstructural, dielectric, ferroelectric, and photoluminescent properties were studied. X‐ray diffraction and scanning electron microscopy analysis indicated that both the grain size and (100)C orientation degree of NBST thin films were decreased by doping Sm3+ ions. Raman spectra showed that structural symmetry of NBST thin films decreased at low Sm3+ doping concentration and then increased at high doping concentration of Sm3+ ions. An appropriate amount of Sm3+ dopants was confirmed to enhance dielectric and ferroelectric properties of the NBST thin films. Among all the compositions, the Na0.5Bi0.492Sm0.008TiO3 thin film exhibited the largest remnant polarization (2Pr) of 27.3 μC/cm2 and high dielectric constant of 1068, as well as a low dielectric loss of 0.04. Temperature‐ and frequency‐dependent dielectric characteristics illustrated the relaxor ferroelectric behavior of Na0.5Bi0.492Sm0.008TiO3 thin film. Meanwhile, the Na0.5Bi0.492Sm0.008TiO3 thin film also showed optimal orange‐red emission at 600 nm, which is originating from the 4G5/24H7/2 transition of Sm3+ ions.  相似文献   

8.
The holmium substituted Ba1−3x/2HoxZr0.025Ti0.975O3 (x=0.01, 0.02, 0.025, 0.05) compositions were synthesized by the solid state reaction technique. The synthesized specimens were characterized for their structural and electrical properties using X-ray diffractometer, scanning electron microscopy, impedance analyzer and loop tracer. Phase analysis shows the formation of secondary phase Ho2Ti2O7 for Ho≥2.5 mol% substitution. The microstructural investigation shows that the holmium substitution significantly reduces the grain size. The substitution of holmium increases the Curie temperature for x≤0.02 whereas Curie temperature decreases for x≥0.025. The maximum dielectric constant at transition temperature is observed for x=0.02. The solubility limit is 2 mol% and for x≥0.025 some of the holmium atoms enter B-sites and forms the secondary phase. An increase is observed in the coercive field of the specimens with the increasing holmium content.  相似文献   

9.
The series of 0.86BaTiO3–(0.14?x)BaZrO3xCaTiO3 (abbreviated as BT–BZ–xCT) ceramics with 0.03 ≤  0.11 were studied to obtain high piezoelectric properties. Rietveld refinement analysis indicated that the BT–BZ–CT compositions follow a gradual rhombohedral (R) → orthorhombic (O) + R → + tetragonal (T) → T phase transformation with increasing x. Clear evidence of the series of ferroelectric phase transitions was also found in the dielectric results. The RO and OT transition temperature shifted close to ambient temperature, while the Curie temperature slightly increased with increasing x. In addition to the dielectric loss peaks associated with the structural phase transitions, a broad low‐temperature dielectric loss peak was detected in the R phase at = 90‐150 K. This dielectric relaxation was attributed to the domain wall freezing and fits well to the Vogel‐Fulcher model with activation energy Ea ≈ 60‐300 meV and freezing temperature TVF ≈ 75‐140 K. High piezoelectric strain coefficient (d33*) of about 1030 pm/V at 10 kV was achieved at = 0.07, and a high Curie temperature (TC) was maintained at about 375 K.  相似文献   

10.
The piezoelectric and ferroelectric properties of 0.76(Bi0.5Na0.5)TiO3–0.04(Bi0.5Li0.5)TiO3–0.2(Bi0.5K0.5)TiO3 (abbreviated as 0.76BNT–0.04BLT–0.2BKT) ceramics were investigated to clarify the optimal sintering temperature, and the vibration characteristics were examined for a compression‐mode accelerometer assembly in which 0.76BNT–0.04BLT–0.2BKT ceramics sintered at the optimized temperature served as the piezoelectric elements. The increase in the grain size of the 0.76BNT–0.04BLT–0.2BKT ceramics with the sintering temperature provides a beneficial contribution to the piezoelectric coefficient; however, it detrimentally contributes to the depolarization temperature. The charge sensitivity of the prototype accelerometers was evaluated with changes in the seismic mass and the layer number of the piezoceramics. The deviation between the theoretical and measured values of charge sensitivity was less than 10%.  相似文献   

11.
To greatly enhance the mechanical quality factor (Qm) of piezoceramic materials, B2O3–CuO mixed oxides were added to a K0.48Na0.52NbO3‐based lead‐free piezoceramic (abbreviated as BC‐KNN). The results suggest that the B2O3–CuO additives effectively improved the sinterability and Qm value of the piezoceramic. An optimal Qm value as high as 2128 was obtained, which is 35 times higher than that of pure KNN ceramic. Interestingly, we found that the Qm value was sensitive to humidity of the surrounding environment. As the relative humidity (RH) increased from 25% RH to 78% RH, the Qm value of the BC‐KNN ceramics decreased from 2128 to 267. We found that the dependence of the Qm value on humidity was closely related to the instability of the relative dielectric constant (?r). Our results show that a dense microstructure is critical for maintaining a stable high Qm performance in a humid environment.  相似文献   

12.
Defect greatly affects the microscopic structure and electrical properties of perovskite piezoelectric ceramics, but the microscopic mechanism of defect‐driven macroscopic properties in the materials is not still completely comprehended. In this work, K0.5Na0.5NbO3+x mol CuSb2O6 lead‐free piezoelectric ceramics were fabricated by a solid‐state reaction method and the defect‐driven evolution of piezoelectric and ferroelectric properties was studied. The addition of CuSb2O6 induces the formation of dimeric (DC1) and trimeric (DC2) defect dipoles. At low doping concentration of CuSb2O6 (0.5‐1.0 mol%), DC1 and DC2 coexist in the ceramics and harden the ceramics, inducing a constricted double P‐E loop and high Qm of 895 at x=0.01. However, DC2 becomes more dominant in the ceramics with high concentration of CuSb2O6 (≥1.5 mol%) and thus leads to softening behavior of piezoelectricity and ferroelectricity as compared to the ceramic with x=0.01, giving a single slanted P‐E loop and relatively low Qm of 206 at x=0.025. All ceramics exhibit relatively high d33 of 106‐126 pC/N. Our study shows that the piezoelectricity and ferroelectricity of K0.5Na0.5NbO3 ceramics can be tailored by controlling defect structure of the materials.  相似文献   

13.
Geopolymers are inorganic aluminosilicates mainly proposed as environmentally friendly building materials, which are obtained by alkali activation of natural minerals, calcined clay (e.g., metakaolin) and other aluminosilicate sources. The wide range of chemical and mineralogical compositions of these raw materials influences several properties of the obtained geopolymers. In the present work, pure Al2O3·2SiO2 powders were synthesized via the sol–gel technique and proposed as pure aluminosilicate sources to prepare alkali activated geopolymers. Samples differing in the ratio between the SiO2 precursor and the H2O used in the sol–gel process were prepared, in order to study the effect of water content on the material structure and reactivity. The chemical structure of all the obtained Al2O3·2SiO2 powders were characterized by Fourier transform infrared (FT‐IR) and solid‐state nuclear magnetic resonance (27Al and 29Si MAS NMR) spectroscopies and compared to that of a reference metakaolin. Moreover, material reactivity was evaluated by alkali activation of the samples. After 28 days of ageing, 27Al and 29Si MAS NMR and FT‐IR spectra ascertained the formation of a geopolymeric network in the activated samples. The results showed that lower water content allows obtaining a homogeneous Al‐rich geopolymer similar to that obtained, using metakaolin as raw material.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号

京公网安备 11010802026262号