首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
This paper describes the principle of the pulsed electroacoustic (PEA) method, which was developed a few years ago for profiling the space charge distribution in an acoustically homogeneous solid material. Initially the PEA method could indicate the space charge distribution in the materials only indirectly. Some data processing, for example deconvolution, was necessary to obtain the charge profile. Some very important improvements were made recently to the PEA method which eliminated the need for deconvolution. This paper describes the latest improvements and the practical construction of the detecting electrode system under which the output signal is linearly proportional to the space charge distribution. Nowadays the PEA method can be used to measure the space charge distribution with or without DC electrical stress, not only in free-standing dielectric plates but also directly in coaxial cables  相似文献   

2.
The pulsed electroacoustic (PEA) method is used to measure space charge distributions in insulating materials. A high-resolution PEA measurement system and signal procedure has been discussed in previous papers. Since the signal procedure is necessary for high-resolution measurement, the system must include a computer. In this paper, a new PEA system without signal processing is introduced. In order to eliminate the inevitable signal distortion of the conventional PEA method, the new system employs a new voltage waveform generator, one that is different from the very narrow pulse generator used in conventional PEA systems. Using the new waveform, designed based on the impulse response of the measurement system; the output signal can show the space charge distribution directly, without the need to conduct deconvolution. Thus, space charge distributions can be measured on site, such as in a factory, with a portable oscilloscope. The spatial resolution of the space charge measurement of the system is 10 /spl mu/m, which is the same as that of conventional PEA systems. Such a portable PEA system can contribute to various industrial applications.  相似文献   

3.
The pulsed electroacoustic (PEA) method already has been used widely to measure the space charge distribution in the pulsed electric field direction of sheet specimens. We have developed a new PEA measurement system which can observe the space charge distribution in three dimensions. Since the PEA system is not damaged if the specimen breaks down, the new PEA system can measure the space charge distribution of dielectric materials safely and nondestructively within a short time  相似文献   

4.
首先阐述了目前已广泛应用的电声脉冲法(PEA)测量电介质中空间电荷的原理,介绍了一台新型的PEA空间电荷测量装置(其电脉冲幅值和宽度可调),并利用此装置在相同的测试条件下测量了相同的试样。研究发现:对固定厚度的传感器来讲,空间电荷分布信号随脉冲幅值增加而增加,且其波形随脉冲宽度增加而展宽和增强。最后根据PEA测量空间电荷的原理合理分析了上述的现象。  相似文献   

5.
In the present paper the formation of space charge in irradiated low-density polyethylene (LDPE) was investigated using the pulsed electroacoustic (PEA) technique. Specimens of LDPE, ~100 μm thick, were irradiated to various doses at room temperature in a 60Co γ source in one of three different environments: ambient room air, oxygen-free nitrogen and vacuum. The results obtained indicate that the space charge distribution is dependent on the irradiation environment. There is a large concentration of positive charge evident in the sample irradiated in air compared to very little for material irradiated in either vacuum or nitrogen under similar conditions. This indicates that the presence of oxygen during irradiation, and thereby oxidation itself, has a major influence on the mechanism by which space charge evolves. Thus the monitoring of space charge may in itself be an indicator of the degree of oxidation and of aging in a material. The evolution of space charge and its decay are discussed  相似文献   

6.
吴锴  陈曦  王霞  秦楷  成永红 《绝缘材料》2012,45(3):60-63,68
系统介绍了国内外温度梯度场下用PEA空间电荷测量方法及温度梯度效应对绝缘内空间电荷的影响,提出了温度梯度场下PEA法测量空间电荷的发展趋势。  相似文献   

7.
等离子表面处理聚乙烯中空间电荷分布   总被引:12,自引:7,他引:5  
在高场强下用电声脉冲法(PEA)测量用等离子表面处理后的聚乙烯试样中空间电荷的分布,利用扫描电子显微镜(SEM)观察聚合物的表面形态,并用红外光谱(IR)分析结构特征。通过和纯聚乙烯试样的比较,研究使用等离子表面处理低密度聚乙烯后对空间电荷产生的影响并分析相应机理。可以看出等离子表面处理聚乙烯可以有效抑制空间电荷的产生。  相似文献   

8.
Dielectric materials used in space on satellite structure may have to cope with strong levels of charging under electron irradiation in space environment. This could lead to potential hazardous discharges and electric arcs and consequent anomalies on the satellite, such as electromagnetic disturbances or, in worst case, the destruction of some on-board systems. These materials need to be tested on-ground to assess their electric behaviour and predict any risk of failure in space environment. The SIRENE facility allows the simulation of geostationnary orbit electron environment and the evaluation of charging capabilities of material samples. We demonstrate, in this paper, that polyimide and polytetrafluoroethylene samples, commonly used in space, are submitted to potentially high radiation induced conductivity or resistivity and electrical ageing under radiation dose in this environment. These physical mechanisms can either reduce the charging level, as observed for polyimide, or dramatically enhance the electric surface potential and the charging kinetics, as seen on polytetrafluoroethylene, leading to high risk of discharge.  相似文献   

9.
The PEA technique has been modified to study the space charge development in solid dielectrics subjected to AC electric field. Narrow (5 ns) electrical pulses are applied at various phase angles of the AC waveform. Special software, developed to precisely synchronize the pulse generator with the high voltage supply, applied the narrow pulses at 0deg phase angle and then in steps of 10deg till 360deg. By processing the PEA data at various phase angles of the AC waveform, without resorting to complex mathematical analysis, the electric field at which charges are injected into the polymeric insulation was determined. The phase resolved PEA technique can also provide the dynamics of space charge development under AC fields  相似文献   

10.
Space charge behavior in low density polyethylene at pre-breakdown   总被引:1,自引:0,他引:1  
It has been known that the electrical breakdown of insulating materials is strongly affected by the formation of space charge in the bulk of the materials. Many researchers have attempted to study the relationship between the space charge and the breakdown; however, it has not been clarified yet. Although the pulsed electroacoustic (PEA) method has been widely used to observe space charge profiles, previous works have not shown clear evidence of the influence of the space charge on the breakdown. Therefore, we have developed a new PEA system with an interval of 0.5 ms to observe the space charge distribution continuously under the ultra-high electric field. Using this system, we observed the space charge dynamics in the low-density polyethylene (LDPE) at and around the breakdown. We also investigated the dependence of the applied electric field on space charge behavior. From the results, it is found that the injected charge packet moved faster and deeper under a relatively lower electric field rather than that under a higher electric field. Furthermore, we found that the maximum electric field in each specimen was almost the same when the breakdown happened in a specimen.  相似文献   

11.
The pulsed electroacoustic (PEA) method is now widely accepted as one of the most simple and effective techniques for the measurement of the dynamic space charge distribution in solid dielectrics. Recently, the PEA method has been applied also to laminar test objects composed of two or more layers of different dielectrics (multi-dielectrics). However, when a multi-dielectric is tested by means of the PEA method, the different acoustic and electric properties of the materials affect the detected space charge signal. In this paper, the principle of the PEA technique is reviewed in case the test object is a multi-dielectric. The generation, transmission and reflection of electrically-induced acoustic waves are described. Based on the proposed approach, results of PEA measurements performed on various kinds of multi-dielectrics are presented and discussed.  相似文献   

12.
脉冲电声法(PEA)空间电荷测量是交联聚乙烯(XLPE)绝缘直流电缆材料选型与评价的主要技术手段,被广泛应用于直流电缆薄膜试样。但应用该方法测量厚尺寸平板试样和大尺寸同轴试样以研究材料体效应对空间电荷的影响时,声波信号在材料中传播时的衰减与色散将直接影响电荷密度测量的精度和空间分辨率。提出了在空间电荷校准过程中利用理论计算直流电场的方法确定内外电极表面的电容电荷密度,然后计算确定在绝缘介质中传播的脉冲声波信号传递函数(该函数含有衰减和色散系数),再对原始信号进行反卷积分运算以去除系统响应。在频域利用测量信号乘以传递函数获得脉冲声波信号经过衰减、色散恢复后的信号,从而保证大尺寸直流电缆试样测量中电荷密度及空间分辨率的测量精度。同时,设计了全尺寸直流电缆空间电荷测量系统,并在LabVIEW环境下开发了数据采集与处理系统。  相似文献   

13.
The space charge distribution in low-density polyethylene (LDPE) was measured with the pulsed electroacoustic (PEA) method. We used three types of LDPE: LDPE-L and LDPE-H were prepared by the high pressure process, and m-LDPE was polymerized with a metallocene catalyst. Space charge in LDPE strongly depended upon the electrode material. Semiconductive electrodes enhanced carrier injection into LDPE and, as a result, space charge. The density, polymerization process, applied field, temperature and so on also affected the space charge behavior. This space charge behavior was compared with the results of dc current measurements  相似文献   

14.
This article introduces new space charge measurement systems developed in Japan using the pulsed electroacoustics (PEA) method. The new methods include two types of 3-D systems, two types of transient systems for extremely high or low temperature, a small PEA unit for a portable system, and a mountable PEA unit that can be applied to another facility, such as a vacuum chamber. These new PEA systems should expand the applicable research field.  相似文献   

15.
介绍了自主制作的用于平板型试品的电声脉冲法(PEA)空间电荷测量原理和测试系统系统。着重介绍了系统的原理和硬件结构以及相应的重要参数。本套测量系统的优点是:结构紧凑,测量精度较高,对于PE类材料中的空间电荷分布可以很好的进行测量。  相似文献   

16.
Polyvinyl chloride (PVC) is the most popular insulating material for electric wiring instruments. However, an exothermic reaction above 150 °C may cause deterioration of the insulating properties of PVC. Therefore, it is important to clarify the heat degradation in PVC, not only to investigate the ignition of electrical wiring products but also to use electrical products safely. It is known that ultraviolet (UV) irradiation causes chemical deterioration of PVC and an increase in its conductivity. Generally, it has been thought that the electrical breakdown properties, electrical conduction, and insulating performance are affected by space charge accumulation in an insulating material. A high temperature pulsed electroacoustic (PEA) system usable up to 250 °C has been developed, and the PEA system can measure the space charge distribution and conduction current in the high temperature range simultaneously. In this investigation, the space charge distribution and conduction current were measured up to electrical breakdown in a non‐UV irradiated sample (normal PVC) and in 353 nm and 253 nm UV‐irradiated PVC samples in the range from room temperature to 200 °C in a DC electric field. In the short wavelength UV irradiated PVC sample (253 nm, 300 h), a deterioration of breakdown strength at 90 °C to 150 °C and negative packet‐like charges were observed at 60 °C and 100 °C, a positive charge accumulated in front of both the anode and cathode above 90 °C, and a higher electric field near the cathode side because the positive charge of the cathode side was greater.  相似文献   

17.
Electroluminescence (EL) excitation mechanisms have been investigated in epoxy resin under divergent and uniform field situations. Metallic wires embedded in the resin were used to produce field divergence whereas film samples were metallised to obtain a uniform field. EL under divergent field was stimulated by a pulse voltage. Light was emitted on the positive and negative fronts of the pulses when the field exceeded 20 kV/mm at the wire surface, with equal intensity and without polarity dependence. There was evidence of space charge accumulation around the wires in multiple-pulse experiments. Charge injection and extraction occurring at both fronts of the pulse provide the condition for EL excitation. Further excitation of the EL during the plateau of the voltage pulse is prevented by the opposite field of the trapped charge. Field computation with and without space charge supports the proposed interpretation. A dc voltage was used for the uniform field experiments. A continuous level of EL is found at 175 kV/mm. Charging/discharging current measurements and space charge profile analyses using the pulsed electroacoustic (PEA) technique were performed at different fields up to the EL level. Dipolar orientation generates a long lasting transient current that prevents the conduction level being reached within the experimental protocol (one hour poling time). The continuous EL emission is nevertheless associated with a regime where the conduction becomes dominant over the orientational polarization. Polarization and space charge contribute to the PEA charge profiles. Homocharge injection at anode and cathode is seen at 20 kV/mm and a penetration of positive space charge in the bulk is detected above 100 kV/mm, suggesting an excitation of the continuous EL by bipolar charge recombination  相似文献   

18.
The pulsed electroacoustic (PEA) method has been widely used to observe space charge distributions in various solid dielectric materials. The sensitivity of the conventional PEA system is around 1C/m3. When the charge density is less than 1C/m3, however, it is difficult to obtain an accurate result because the signal due to the Maxwell stress becomes comparable with the signal to be measured. The Maxwell stress is generated by applying the pulsed electric field to the dielectrics, and independent from the existence of either induced charges by DC bias voltage or internal charges. In order to eliminate the influence of the Maxwell stress, we have developed a new PEA system with a dual‐polarity pulse generator. The system allows measurement space at a charge density of around 0.03C/m3. © 2008 Wiley Periodicals, Inc. Electr Eng Jpn, 166(2): 1– 7, 2009; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/eej.20496  相似文献   

19.
It is well known that the existence and accumulation of space charge in insulation can be harmful to polymer power cable. Although there is much research done on space charge distribution in various samples, there are still some important problems left unsolved, such as the mechanism of formation and elimination of space charge in dielectrics. Because of its superiority, the pulsed electro-acoustic (PEA) measurement method is used widely in the measurement of space charge in various geometries of samples such as the multiple layer plate and cylindrical cables. The space charge in crosslinked polyethylene (XLPE) power cable under dc voltage and heat treatment is investigated by the PEA method in this paper. After heat treatment, the space charge, which previously formed in cable insulation under the applied voltage, disappears. If electrical stress is applied to the insulation again, space charge will appear once more. However, after the cable is heated and degassed in vacuum for a long time, no matter how long the dc voltage is applied to the cable, no more space charge will be formed in the cable. The mechanism of formation and elimination of space charge under the effect of electrical and thermal stress is discussed  相似文献   

20.
聚乙烯表面形貌对其空间电荷特性的影响   总被引:1,自引:0,他引:1  
随着空间电荷测量技术在最近三十年的巨大进步,固体电介质空间电荷研究成为研究热点.聚乙烯的热压冷却条件会显著影响聚乙烯的形态结构.而聚乙烯在热压过程中,其表面会由于不同的基底材料而形成不同的附生结晶层,从而具有不同的表面形貌.此附生层的形态对空间电荷特性有很大的影响.通过研究聚乙烯不同表面形貌的形成过程及其显微特征,并结合微观形态对不同表面形貌的聚乙烯进行了空间电荷测量分析,发现不同表面形貌的聚乙烯试样具有不同的空间电荷积聚特性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号