首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Groundwaters in the confined aquifers of the Chianan and Ilan coastal plains of Taiwan are rich in dissolved methane (CH4). Serious endemic “blackfoot disease”, which occurred in the Chianan plain, especially during AD1950-1970, has been demonstrated to have arisen from drinking highly reducing groundwater with abnormal arsenic and humic substance levels. In order to explore the origin of CH4 and its hydrological implications, stable carbon isotope ratios (δ13C) and radiocarbon (14C) ages of exsolved CH4, dissolved inorganic carbon (DIC), and sedimentary biogenic sediments from a total of 34 newly completed water wells at 16 sites were determined. The main results obtained are as follows: (1) The δ13CCH4 (−65‰ to −75‰) values indicate that, except for one thermogenic sample (δ13CCH4=38.2) from the Ilan plain, all CH4 samples analyzed were produced via microbially mediated CO2 reduction. Many δ13CDIC values are considerably greater than −10‰ and even up to 10‰ due to Rayleigh enrichment during CO2 reduction. (2) Almost all the 14C ages of CH4 samples from the shallow aquifer (I) (<60 m depth) are greater than the 14C ages of coexisting DIC and sediments, suggesting the presence of CH4 from underlying aquifers. (3) The 14C ages of coexisting CH4, DIC and sediments from aquifer (II) of the Chianan plain are essentially equal, reflecting in-situ generation of CH4 and DIC from decomposition of sedimentary organic matter and sluggishness of the groundwater flow. On the other hand, both CH4 and DIC from each individual well of the relatively deep aquifers (III) and (IV) in the Chianan plain are remarkably younger than the deposition of their coexisting sediments, indicating that current groundwaters entered these two aquifers much later than the deposition of aquifer sediments. (4) Each CH4 sample collected from the Ilan plain is older than coexisting DIC, which in turn is distinctly older than the deposition of respective aquifer sediments, demonstrating the presence of much older CO2 and CH4 from underlying strata.  相似文献   

2.
Concentrations of Fe, Mn, Zn, Cu, Pb, Ni, and Cd were measured in several species and genera of Recent benthic foraminifera from three coastal lagoons, namely Abu-Shaar, Umm al-Huwaytat, and Marsa Shuni lagoons located along the Egyptian Red Sea coast. Spatially significant differences in the metal concentrations of benthic foraminifera were recorded among different sites. However, some foraminiferal species display deformation in their coiling, general shape of chambers and the apertures. Abu-Shaar and Umm al-Huwaytat lagoons are virtually influenced by anthropogenic activities while Marsa Shuni lagoon is affected by natural inputs. Benthic foraminifer shows high concentrations of Fe and Mn, especially in Umm al-Huwaytat lagoon. Foraminiferal black tests support this result and reflect selectivity for iron absorption. Among the metals analyzed, Cd, Pb, and Cu showed significant high concentrations in benthic foraminifera at the study areas. The anthropogenic activities and natural inputs are responsible for the abnormalities in benthic foraminifera. Therefore, benthic foraminifera can be used as a good indicator of the environmental changes.  相似文献   

3.
Carbon and oxygen isotope data from Cenomanian–Turonian sediments from the southwest of the Crimea are presented. The sediments consist of limestones, marls and organic-rich claystones, the latter with total organic carbon values up to 2.6 wt. %, representing Oceanic Anoxic Event 2. A shift to more negative δ18O values through the uppermost Cenomanian into the lowermost Turonian may be the result of warming; however, petrographic analysis shows that the samples have undergone a degree of diagenetic alteration. The carbon isotope data reveal a positive excursion from 2.7‰ to a peak of 4.3‰ at the Cenomanian/Turonian boundary; values then decrease in the early Turonian. This excursion is comparable to those of other Cenomanian–Turonian sections, such as those seen in the Anglo-Paris Basin, and is thought to be due to global changes in the oceanic carbon reservoir. On this curve are a number of negative δ13C excursions, just below the Cenomanian/Turonian boundary. It is suggested that these negative excursions are associated with the uptake of light carbon derived from the oxidation and deterioration of organic material during localised exposure of the sediments to oxic or meteoric diagenetic conditions, possibly during sea-level fluctuations.  相似文献   

4.
Data on ocean color chlorophylla (Chl a) obtained using Sea-viewing Wide Field of view Sensor (SeaWiFS), sea surface temperature (SST) by Advanced Very High Resolution Radiometer (AVHRR), and sea surface height (SSH) by TOPEX/POSEIDON were analyzed to examine the influence of Indian Ocean Dipole (IOD) on the physical and biogeochemical processes with special reference to phytoplankton primary production and air-sea fluxes of carbon dioxide in the Arabian Sea. Positive SST anomalies (SSTA) were found in the Arabian Sea (0.4 to 1.8°C) with higher values in the southwestern Arabian Sea that decreased towards north. The SSH anomalies (SSHA) and turbulent kinetic energy anomalies (TKEA) suggest decreased mixing during the IOD compared to the normal period. Chlorophylla displayed significant negative correlations with SSTA and SSHA in the Arabian Sea. Consistently, Chla showed negative anomalies (low Chl a) during the IOD period which could be due to reduced inputs of nutrients. The photic zone integrated primary production decreased by 30% during the IOD period compared to the normal whereas pCO2 levels were higher (by 10–20μatm). However, sea to air fluxes were lower by 10% during the IOD period due to prevailing weaker winds. Primary production seems to be the key process controlling the surface pCO2 levels in the Arabian Sea. In future, the influence of IOD on ecosystem structure, export production and bacterial respiration rates are to be probed throughin situ time-series observations.  相似文献   

5.
Partly laminated sediments were sampled from the brine-filled, anoxic Shaban Deep basin in the northern Red Sea. At about 4200 cal yr BP more than two millennia of anoxic sedimentation is replaced by a sub-oxic facies strongly suggesting the episodic absence of the brine. At the same time stable oxygen isotopes from surface dwelling foraminifera show a sharp increase (within less than 100 yr) pointing to a strong positive salinity anomaly at the sea surface. This major evaporation event significantly enhanced the renewal of deep water and the subsequent ventilation of the small Shaban Deep basin. The timing and strength of the reconstructed environmental changes around 4200 cal yr BP suggest that this event is the regional expression of a major drought event, which is widely observed in the neighboring regions, and which strongly affected Middle East agricultural civilizations.  相似文献   

6.
Permian Khuff reservoirs along the east coast of Saudi Arabia and in the Arabian Gulf produce dry sour gas with highly variable nitrogen concentrations. Rough correlations between N2/CH4, CO2/CH4 and H2S/CH4 suggest that non-hydrocarbon gas abundances are controlled by thermochemical sulfate reduction (TSR). In Khuff gases judged to be unaltered by TSR, methane δ13C generally falls between −40‰ and −35‰ VPDB and carbon dioxide δ13C between −3‰ and 0‰ VPDB. As H2S/CH4 increases, methane δ13C increases to as much as −3‰ and carbon dioxide δ13C decreases to as little as −28‰. These changes are interpreted to reflect the oxidation of methane to carbon dioxide.Khuff reservoir temperatures, which locally exceed 150 °C, appear high enough to drive the reduction of sulfate by methane. Anhydrite is abundant in the Khuff and fine grained nodules are commonly rimmed with secondary calcite cement. Some cores contain abundant pyrite, sphalerite and galena. Assuming that nitrogen is inert, loss of methane by TSR should increase N2/CH4 of the residual gas and leave δ15N unaltered. δ15N of Paleozoic gases in Saudi Arabia varies from −7‰ to 1‰ vs. air and supports the TSR hypothesis. N2/CH4 in gases from stacked Khuff reservoirs varies by a factor of 19 yet the variation in δ15N (0.3–0.5‰) is trivial.Because the relative abundance of hydrogen sulfide is not a fully reliable extent of reaction parameter, we have attempted to assess the extent of TSR using plots of methane δ13C versus log(N2/CH4). Observed variations in these parameters can be fitted using simple Rayleigh models with kinetic carbon isotope fractionation factors between 0.98 and 0.99. We calculate that TSR may have destroyed more than 90% of the original methane charge in the most extreme instance. The possibility that methane may be completely destroyed by TSR has important implications for deep gas exploration and the origin of gases rich in nitrogen as well as hydrogen sulfide.  相似文献   

7.
Iron is one of the most abundant transition metal in higher plants and variations in its isotopic compositions can be used to trace its utilization. In order to better understand the effect of plant-induced isotopic fractionation on the global Fe cycling, we have estimated by quantum chemical calculations the magnitude of the isotopic fractionation between different Fe species relevant to the transport and storage of Fe in higher plants: Fe(II)-citrate, Fe(III)-citrate, Fe(II)-nicotianamine, and Fe(III)-phytosiderophore. The ab initio calculations show firstly, that Fe(II)-nicotianamine is ~3‰ (56Fe/54Fe) isotopically lighter than Fe(III)-phytosiderophore; secondly, even in the absence of redox changes of Fe, change in the speciation alone can create up to ~1.5‰ isotopic fractionation. For example, Fe(III)-phytosiderophore is up to 1.5‰ heavier than Fe(III)-citrate2 and Fe(II)-nicotianamine is up to 1‰ heavier than Fe(II)-citrate. In addition, in order to better understand the Fe isotopic fractionation between different plant components, we have analyzed the iron isotopic composition of different organs (roots, seeds, germinated seeds, leaves and stems) from six species of higher plants: the dicot lentil (Lens culinaris), and the graminaceous monocots Virginia wild rye (Elymus virginicus), Johnsongrass (Sorghum halepense), Kentucky bluegrass (Poa pratensis), river oat (Uniola latifolia), and Indian goosegrass (Eleusine indica). The calculations may explain that the roots of strategy-II plants (Fe(III)-phytosiderophore) are isotopically heavier (by about 1‰ for the δ56Fe) than the upper parts of the plants (Fe transported as Fe(III)-citrate in the xylem or Fe(II)-nicotianamine in the phloem). In addition, we suggest that the isotopic variations observed between younger and older leaves could be explained by mixing of Fe received from the xylem and the phloem.  相似文献   

8.
The geochemistry of carbonate fault rocks has been examined in two areas of the Arava Fault segment, which forms the major branch of the Dead Sea Transform between the Dead Sea and the Gulf of Aquaba. The role of fluids in faulting deformation in the selected fault segment is remarkably different from observations at other major fault zones. Our data suggest reduced fluid rock interactions in both areas and limited fluid flow. The fault did not act as an important fluid conduit. There are no indications that hydrothermal reactions (cementation, dissolution) did change the strength and behavior of the fault zone, although the two areas show considerable differences with respect to fluid sources and fluid flow. In one area, the investigated calcite mineralization reveals an open fluid system with fluids originating from a variety of sources. Stable isotopes (13C, 18O), strontium isotopes, and trace elements indicate both infiltration of descending (meteoric and/or sea water) and ascending hydrothermal fluids. In the other area, all geochemical data indicate only local (small scale) fluid redistribution. These fluids were derived from the adjacent limestones under nearly closed-system conditions.  相似文献   

9.
The middle Cenomanian–lower Turonian deposits of Ohaba-Ponor section (Southern Carpathians) were studied from biostratigraphic and isotopic points of view. Both the qualitative and semiquantitative nannofloral analyses, as well as the stable isotope (δ13C and δ18O) data support significant palaeoenvironmental changes in the investigated interval. Two δ13C positive excursions were recognized: (1) an excursion up to 1.8‰ (PDB) within the middle/late Cenomanian boundary; (2) an excursion up to 2.2‰ (PDB) in the Cenomanian/Turonian boundary interval. The oldest δ13C positive excursion recorded (placed within the Acanthoceras jukes-brownei/Eucalycoceras pentagonum Ammonite Zone boundary interval, and in the NC11 Calcareous Nannofossil Zone respectively) could be assigned to the middle Cenomanian Event II (MCEII). During the above-mentioned event, significant increase in abundance of Watznaueria barnesae, followed by successive blooms of Biscutum constans and Eprolithus floralis, were observed. The youngest δ13C positive excursion was identified in the Cenomanian/Turonian boundary interval (in the NC12 and lower part of the NC13 Calcareous Nannofossil Zones). Even the amplitude of this δ13C positive excursion is lower in the Ohaba-Ponor section, as generally reported, this may represent the regional record of the OAE2. The successive peaks of the nannofossils Biscutum constans, Zeugrhabdotus erectus and Eprolithus floralis indicate episodes of cooler surface water and high fertility, which preceded and lasted the Cenomanian/Turonian boundary event. Additionally, fluctuations of δ18O values between −2 and −6‰ suggest also cooler conditions within the Cenomanian/Turonian boundary interval.  相似文献   

10.
Oxygen isotope profiles along the growth axis of fossil bivalve shells of Macoma calcarea were established to reconstruct hydrographical changes in the eastern Laptev Sea since 8400 cal yr B.P.. The variability of the oxygen isotopes (δ18O) in the individual records is mainly attributed to variations in the salinity of bottom waters in the Laptev Sea with a modern ratio of 0.50‰/salinity. The high-resolution δ18O profiles exhibit distinct and annual cycles from which the seasonal and annual salinity variations at the investigated site can be reconstructed. Based on the modern analogue approach oxygen isotope profiles of radiocarbon-dated bivalve shells from a sediment core located northeast of the Lena Delta provide seasonal and subdecadal insights into past hydrological conditions and their relation to the Holocene transgressional history of the Laptev Sea shelf. Under the assumption that the modern relationship between δ18Ow and salinity has been constant throughout the time, the δ18O of an 8400-cal-yr-old bivalves would suggest that bottom-water salinity was reduced and the temperature was slightly warmer, both suggesting a stronger mixture of riverine water to the bottom water. Reconstruction of the inundation history of the Laptev Sea shelf indicates local sea level ∼27 m below present at this time and a closer proximity of the site to the coastline and the Lena River mouth. Due to continuing sea level rise and a southward retreat of the river mouth, bottom-water salinity increased at 7200 cal yr B.P. along with an increase in seasonal variability. Conditions comparable to the modern hydrography were achieved by 3800 cal yr B.P.  相似文献   

11.
We reconstructed the paleoenvironmental history of surface and deep water over the last 130 kyr from oxygen and carbon isotope ratios of planktonic and benthic foraminifera in two cores (MD179-3312 and MD179-3304) from the Joetsu Basin, eastern margin of the Japan Sea. Our data showed that paleoceanographic changes such as influx of surface currents and vertical circulation were associated with global glacial–interglacial sea level change. Surface water conditions were influenced by the influx of Tsushima Current, East China Sea coastal or off-shore waters through the Tsushima Strait during interglacial or interstadial stages, and strongly affected by freshwater input during the glacial maximum. During interglacial maximums such as Marine Isotope Stages 1 and 5e, development of well-oxygenated bottom water was indicated. A density-stratified ocean with weak ventilation was inferred from the isotopic records of benthic foraminifera during the Last Glacial Maximum. Local negative excursions in carbon isotopes during deglacial or interglacial periods may suggest the dissolution of gas hydrates or methane seep activities.  相似文献   

12.
Isotopic and chemical composition of groundwater from wells and springs, and surface water from the basalt-dominated Axum area (northern Ethiopia) provides evidence for the origin of water and dissolved species. Shallow (depth < 40 m) and deep groundwater are distinguished by both chemical and isotopic composition. Deep groundwater is significantly enriched in dissolved inorganic carbon up to 40 mmol l−1 and in concentrations of Ca2+, Mg2+, Na+ and Si(OH)4 compared to the shallow type.The δ2H and δ18O values of all solutions clearly indicate meteoric origin. Shifts from the local meteoric water line are attributed to evaporation of surface and spring water, and to strong water–rock interaction. The δ13CDIC values of shallow groundwater between −12 and −7‰ (VPDB) display the uptake of CO2 from local soil horizons, whereas δ13CDIC of deep groundwater ranges from −5 to +1‰. Considering open system conditions with respect to gaseous CO2, δ13CDIC = +1‰ of the deep groundwater with highest PCO2 = 10−0.9 atm yields δ13CCO2(gas) ≈ −5‰, which is close to the stable carbon isotopic composition of magmatic CO2. Accordingly, stable carbon isotope ratios within the above range are referred to individual proportions of CO2 from soil and magmatic origin. The uptake of magmatic CO2 results in elevated cations and Si(OH)4 concentrations. Weathering of local basalts is documented by 87Sr/86Sr ratios of the groundwater from 0.7038 to 0.7059. Highest values indicate Sr release from the basement rocks. Besides weathering of silicates, neoformation of solids has to be considered, which results in the formation of, e.g., kaolinite and montmorillonite. In several solutions supersaturation with respect to calcite is reached by outgassing of CO2 from the solution leading to secondary calcite formation.  相似文献   

13.
The saturated and unsaturated hydrocarbons of two samples (HD-19 and HD-21) from the same section of the Middle Eocene lacustrine Huadian oil shale in NE China were identified and shown to be mainly from algal and bacterial sources. Comparison of the two samples provided an opportunity to explore the contribution from telalginite to the hydrocarbon profiles. Cells identified from microscopy as Botryococcus in the telalginite of HD-21 were confirmed as belonging to the L race of B. braunii from the presence of monoaromatic lycopane derivatives and small amounts of several lycopadienes. Lycopane was abundant and was probably derived from biohydrogenation of lycopadienes and related lipids on the basis of δ13C values. Hopane distributions showed a dominance of those with the biological 17β,21β-stereochemistry, as expected for an immature shale, with low amounts of 17β,21α-hopanes (moretanes) and 17α,21β-hopanes. Two hopenes were also abundant and assigned as C29 and C30 neohop-13(18)-enes, which occurred together with the C29 and C30 hop-17(21)-enes. These had depleted carbon isotope values (−43.7‰ to −50.8‰), indicative of production by methane oxidizing bacteria (methanotrophs). The high proportion of hopanoids with carbon numbers < C32 indicates extensive post-depositional diagenetic alteration of bacteriohopanepolyols as well as a direct input of C30 hopanoids. The data clearly indicate that there was active utilization of methane in this lacustrine depositional setting, but isoprenoid hydrocarbon biomarkers for methanogens, such as pentamethylicosane (PMI) and squalane, were in surprisingly low abundance. It is possible that these bacterial contributions were present as polar lipids. The origins of an unusual C38 isoprenoid alkane assigned as bipristane are uncertain, but may be from methanogens. Steranes and sterenes were relatively minor components, but abundant diasterenes and 4-methyldiasterenes were present, reflecting significant conversion of the original lipid composition by way of clay-catalysed diagenesis. The biomarker data suggest that the bottom waters in the original depositional environment had low O2 content, but the sediments were probably neither sulfidic nor strongly reducing. The high content of organic matter in the shale likely reflects both high (but fluctuating) productivity due to eutrophic conditions in the overlying water and good preservation in the sediments.  相似文献   

14.
Geochemical observations, including major ion and trace element analysis, and isotopic tracing have been carried out in the Subarnarekha River system (northeastern India) during a surface-water- and groundwater-monitoring program aimed at evaluating impacts of mining. The aquifer is of fracture type. Groundwater flow conditions and pollutant transfer were observed through a network of 69 wells. δ18O and δ2H results suggest that transfer from rainfall towards groundwater storage through soils and the unsaturated zone is fast, without any major transformation like evaporation. The scatter of 87Sr/86Sr signatures in surface water and groundwater are explained by three end-members. One is compatible with rainwater inputs. The most mineralised end-member represents anthropogenic inputs (agricultural practices and ore processing). The third end-member, characterised by a high 87Sr/86Sr signature, is believed to be controlled by natural geochemical processes, although affected by human activities (e.g. drainage of mine waste). Potential flow paths, investigated north of the area, reveal that all groundwater types seem to evolve more in pockets than along a flow path. The limited extent of transfer and the predominance of natural phenomena help to explain the moderate level of groundwater contamination and the characteristics of surface water contamination by mining and the metallurgy industry.  相似文献   

15.
Stable isotope data for the Hueco Bolson aquifer (Texas, USA and Chihuahua, Mexico) distinguish four water types. Two types relate to recharge from the Rio Grande: pre-dam (pre-1916) river water with oxygen-18 and deuterium (δ18O, δD, ‰) from (?11.9, ?90) to (?10.1, ?82), contrasts with present-day river water (?8.5, ?74) to (?5.3, ?56). Pre-dam water is found beneath the Rio Grande floodplain and Ciudad Juárez, and is mixed with post-dam river water beneath the floodplain. Two other types relate to recharge of local precipitation; evidence of temporal change of precipitation isotopes is present in both types. Recharge from the Franklin and Organ Mountains plots between (?10.9, ?76) and (?8.5, ?60) on the global meteoric water line (GMWL), and is found along the western side of the Hueco Bolson, north of the Rio Grande. Recharge from the Diablo Plateau plots on an evaporation trend originating on the GMWL near (?8.5, ?58). This water is found in the southeastern Hueco Bolson, north of the river; evaporation may be related to slow recharge through fine-grained sediment. Pre-dam water, recognizable by isotope composition, provides information on groundwater residence times in this and other dammed river basins.  相似文献   

16.
The Rabigh area, a coastal region north of Jeddah city, Saudi Arabia contains raised Quaternary coral reefal terraces and reworked coral fragments mixed with sand and gravel. This area has a thin exposure Lower Miocene shallow marine carbonate rocks that laterally pass into evaporites. The Miocene carbonate and evaporite rocks conformably overly the Lower Miocene siliciclastic sequence, are in turn capped by the Harrat basaltic boulders. The Miocene carbonates are made up of dolomitic packstone, wackestone and mudstone, whereas the overlying Quaternary reefal terraces are composed of coral boundstone and grainstones.The Quaternary reefal terraces of Rabigh area have been dated using the uranium-series dating method to obtain precise dates for these corals. The calculated ages (128, 212 and 235 ka) indicate that deposition took place during high sea level stands associated with interglacial times during Oxygen Isotope Stages (OIS) 5 and 7. The youngest age (128 ka) clearly corresponds to stage 5e of the last interglacial period. The obtained ages correlate well with those of the emerged reefs on the Sudanese and Egyptian coasts at the western side of the Red Sea. The broad distribution of wet climate, pluvial deposits on the continents and high sea level stands indicate a wide geographical range of the interglacial events of the Oxygen Isotope Stages (OIS) 5 and 7.The oxygen and carbon isotopic composition of the Miocene and Quaternary carbonate rocks in Rabigh area show a broad range of δ13C and δ18O. The Quaternary carbonate rocks have significantly higher δ13C than the Miocene ones, but low δ13C values of the Miocene samples likely indicate a high contribution of carbon from organic sources at the time of deposition. Linear trends are evident in both groups of samples supporting the likelihood of secondary alteration.  相似文献   

17.
The Spanish Central System (SCS) has been subjected to repeated deformation and fluid flow events which have produced both sulphide-bearing and barren vein systems. Although several hydrothermal episodes took place between 300 and 100 Ma, fluid circulation during the Permian was especially important, giving rise to a range of different types of deposits. This study presents a multidisciplinary approach leading to the characterisation of the chemistry and age of the hydrothermal fluids that produced the As–(Ag) mineralised stockwork of Mónica mine (Bustaviejo, Madrid). Fluid inclusion data indicate the presence of two different fluids. An initial ore stage (I) formed from a low- to moderate salinity (3–8 wt.% eq. NaCl) H2O–NaCl–CO2–CH4 fluid, at minimum trapping temperature of 350±15 °C and 0.3 kbar. A second H2O–NaCl fluid is found in three types of fluid inclusions: a high temperature and low salinity type (340±20 °C; 0.8–3.1 wt.% eq. NaCl) also associated to ore stage I, a moderate temperature and very low salinity type (160–255 °C; 0–1.5 wt.% eq. NaCl) represented in ore stage III, and a very low temperature and hypersaline type (60–70 °C; 30–35 wt.% NaCl), unrelated to the mineralising stages and clearly postdating the previous types. 40Ar–39Ar dating on muscovite from the early As–Fe stage (I) has provided an age of 286±4 Ma, synchronous with the late emplacement phases of La Cabrera plutonic massif (288±5 Ma) and with other Permian hydrothermal events like Sn–W skarns and W–(Sn) sulphide veins. δ18O of water in equilibrium with stage I quartz (5.3–7.7‰), δD of water in equilibrium with coexisting muscovite (−16.0‰ to −2.0‰), and sulphide δ34S (1.5–3.6‰) values are compatible with waters that leached metamorphic rocks. The dominant mechanism of the As–(Ag) deposition was mixing and dilution processes between aqueous–carbonic and aqueous fluids for stage I (As–Fe), and nearly isobaric cooling processes for stages II (Zn–Cu–Sn) and III (Pb–Ag). The origin and hydrothermal evolution of As–(Ag) veins is comparable to other hydrothermal Permian events in the Spanish Central System.  相似文献   

18.
Benthic foraminifera and stable isotopes analyses revealed changes emerging in the paleoceanographic scenery in the Paratethys. The percentage of inbenthic, oxyphylic taxa and diversity in the benthic foraminiferal assemblage showed increasing food supply (organic matter), decreasing oxygen level and growing stress on the sea floor. Oxygen isotopes measured in planktonic and benthic foraminifera pointed to strengthening stratification during the Badenian period. The carbon isotopes indicated intensified accumulation of light marine organic matter. This increasing stratification trend is especially pronounced by Late Badenian (13.5–13 Ma) when surface water oxygen isotope values are rather negative. A simple two-layer circulation model was worked out for the Badenian Paratethys explaining these characteristic environmental changes. An antiestuarine (lagoonal) circulation is assumed for the Central Paratethys during the Early (16.4–15 Ma) and mid Badenian (15–13.5 Ma). The mid Badenian period of time comprises the short episode of evaporite formation in the Carpathian Foredeep and the Transylvanian Basin. Evidence presented here supported a reversal of circulation to estuarine type after the deposition of salts by Late Badenian (13.5–13 Ma). The Early Badenian antiestuarine circulation is suggested to associate with the high temperatures of the Mid-Miocene Climatic Optimum, and the Late Badenian estuarine circulation with the cooler period following it.  相似文献   

19.
A synthesis of high-resolution (Chirp, 2–7 kHz) seismic profiles in the South Korea Plateau reveals that large masses of wavy stratified sediment (≈60–90 m thick) cover broad, gently sloping (<0·5°) ridges in water depths of 1000–2000 m. The wavy stratified sediment (WSS) is characterized by wavy (0·2–5 km in wavelength and <15 m in relief), continuous reflective layers with a basal deformed zone that overlies undeformed, strong reflectors. The WSS exhibits systematic variation in wave dimensions and thickness of internal reflective layers with changes in slope gradient. The troughs of the waves are commonly associated with internal growth faults, and wave amplitude generally increases with subbottom depth. On steep slopes around the ridges, the WSS masses are bounded downslope by slide and slump deposits including slightly translated or rotated WSS blocks. The acoustic and geometric characters, and association with downslope slides and slumps on the steeper slopes, suggest that the WSS masses were most probably formed by slow creep movement before slope failure. In the absence of significant sediment input to the South Korea Plateau, the deep (1000–2000 m in water depth) mass movements were probably triggered by earthquakes that have occurred frequently in this region. Some slightly displaced, intact WSS blocks in the associated slides and slumps downslope reflect a progressive evolution from submarine creep into slide and slump.  相似文献   

20.
A. Dem  ny  A. Ahijado  R. Casillas  T. W. Vennemann 《Lithos》1998,44(3-4):101-115
Fuerteventura—the second largest of the Canary Islands consists of Mesozoic sediments, submarine volcanic rocks, dike swarms and plutons of the Basal Complex, and younger subaerial basaltic and trachytic series. Carbonatites are found in two Basal Complex exposures: the Betancuria Massif in the central part of the island and the Esquinzo area in the north. values of the carbonatites increase progressively from south to north of the island. This phenomenon is attributed to different degrees of assimilation of sedimentary carbonate. Homogeneous, typically magmatic values for carbonatites which have preserved primary igneous textures and minerals suggest a well-mixed reservoir where changes in values result from the storage of carbonate magmas at different structural levels. The magma storage allowed assimilation of sediment to varying degrees before final emplacement of carbonatites. Shifts in towards more positive and negative values from presumed primary compositions are observed in the carbonatites. On the basis of the oxygen isotope compositions of calcite, mica and K-feldspar, and the hydrogen isotope compositions of micas, the changes in the values of the carbonatites can be related to fluid/rock interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号