首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 500 毫秒
1.
针对离轴非球面制造的难点,研究分析了碳化硅非球面尤其是异形离轴非球面加工和检测的各项关键技术。首先利用加工中心DMG 对离轴非球面进行了铣磨和表面成形,然后运用实验室自行研制的非球面加工中心FSGJ-2 对离轴非球面进行了研磨和抛光,最后利用离子束对其进行了精抛光,并分别利用三坐标测量仪和激光跟踪仪对非球面进行面形轮廓测定和光学参数及几何量的精确控制。结合工程实践对一口径为600 mm270 mm 的类八角形离轴碳化硅非球面反射镜进行了超精加工与检测,并专门设计研制了光学补偿检测装置,对其进行了零位补偿干涉测量,其最终面形PV值为0.219 ,RMS 值为0.018 。  相似文献   

2.
提出了在非球面检验中以反射镜补偿法线像差的方法,用于大口径凸非球面透镜的检测,克服了在检测大口径非球面透镜时一般需要采用多片透镜补偿的困难,降低了设计难度和装调难度,节约了加工成本。设计并研制了大口径凸非球面透镜检测系统,对误差来源进行了分析并给出消除方法。对直径Φ270mm的凸非球面透镜进行检测,测得的非球面面形误差峰谷(PV)值与均方根(RMS)值分别为0.585λ和0.083λ。该方法为大口径非球面透镜检测提供了技术参考,能够适用于大口径透镜粗抛光阶段中的面形检测。  相似文献   

3.
苏航  王孝坤  程强  李凌众  王晶  李雯研  吴琼  唐瓦  罗霄  张学军 《红外与激光工程》2022,51(9):20220576-1-20220576-9
为了实现大口径凸非球面的高精度检测,提出了将子孔径拼接检测法和计算全息补偿检测法相结合的检测方法。由于其中心的非球面度较小,采用球面波直接检测;而外圈的非球面度较大,采用子孔径拼接和计算全息混合补偿的方法进行测量,再通过拼接算法将中心检测数据和外圈检测数据进行拼接从而得到全口径面形。结合实例对一块口径为540 mm的大口径凸非球面进行测量,并将检测结果与Luphoscan 检测结果进行对比,两种方法检测面形残差的RMS值为0.019λ,自检验子孔径与拼接结果点对点相减后的RMS值为0.017λ。结果表明该方法能够实现大口径凸非球面的高精度检测。  相似文献   

4.
张峰 《光机电信息》2010,27(12):62-67
为了加工出高精度八角形离轴非球面反射镜,对离轴非球面反射镜的数控加工和检测技术进行了研究。介绍了非球面计算机控制光学表面成型(CCOS)技术及FSGJ非球面数控加工中心,对数控加工过程中小磨头的运动方式和运动轨迹进行了研究,阐述了离轴非球面反射镜研磨阶段的轮廓测量方法和抛光阶段的零位补偿检测方法,采用数控加工方法对一块八角形离轴非球面反射镜进行了加工。最终的检测结果表明,八角形离轴非球面反射镜的面形精度均方根值为0.018λ(λ=0.6328μm),满足光学设计技术指标要求。  相似文献   

5.
为了获得具有高质量光学表面的非球面碳化硅反射镜,需对碳化硅反射镜表面进行改性。介绍了离子束辅助沉积硅的碳化硅表面改性技术。对改性样片表面硅改性层的机械性能、光学加工性、表面粗糙度及反射率等特性进行研究。实验结果表明,碳化硅表面的硅改性层具有优良的机械性能和良好的光学加工性。光学抛光后,碳化硅表面硅改性层的表面粗糙度为0.85nm[均方根(RMS)值],在可见光波段反射率最高可达98.5%(镀银反射膜)。采用数控加工方法对口径为Ф600mm的表面改性离轴非球面碳化硅反射镜进行加工,最终反射镜面形精度的RMS值达到0.018λ(λ=0.6328μm),满足高精度空间非球面反射镜的技术指标要求。  相似文献   

6.
为了无需定制补偿透镜或者计算全息等就能实现对非球面光学元件的检测,提出了非零位补偿测试非球面的方法。对非零位补偿检验非球面中的部分补偿法、数字样板法和子孔径拼接法的基本原理和基础理论分别进行了分析和研究,建立了合理的数学模型,并对其具体的实现步骤和测试流程进行了分析和规划。结合工程实例,分别利用数字样板法和子孔径拼接法对一口径为350 mm的浅度非球面进行了面形检测,两种方法面形的PV值和RMS值的偏差分别为0.015和0.002(=632.8 nm),并设计和组建了部分补偿检验装置对一高精度凸双曲非球面反射镜进行了测量,其面形的PV值和RMS值分别为0.183和0.018。  相似文献   

7.
为了获得大口径凸非球面反射镜全口径的面形,提出了利用子孔径拼接检测大口径凸非球面的新方法。利用干涉仪标准球面波前依次干涉测定大口径镜面上各个区域的相位分布,通过子孔径拼接算法即可求解得到镜面全口径面形信息。对该方法的基本原理和实现步骤进行了分析和研究,建立了大口径拼接检测算法的数学模型,设计并研制了大口径反射镜拼接检验装置。结合实例对一口径为260 mm 的碳化硅凸非球面反射镜进行了9 个子孔径的拼接干涉测量,并将拼接检测结果与全口径面形测量结果进行对比,两种方法测量面形PV 值和RMS 值的偏差分别为0.043和0.021(=632.8 nm)。  相似文献   

8.
彭利荣  程强  曾雪锋  周晓勤 《红外与激光工程》2022,51(9):20220611-1-20220611-7
为提高离轴三反消像散(TMA)光学系统中次镜的制造效率和精度,开展了离轴凸非球面反射镜组合加工和零位检测的研究工作。首先,介绍了方形(298 mm×264 mm)高次离轴凸非球面反射镜的光学参数、技术指标和总体加工路线;其次,提出了铣磨加工工艺策略以及基于气囊和沥青的小磨头组合加工工艺;最后,阐述了光学零件抛光阶段采用的背部透射零位补偿检测法和Offner型零位补偿器,并采用光线追迹法对镜片的零位补偿检验面形畸变进行了矫正,最终面形RMS值为0.025λ (λ=632.8 nm),满足技术指标要求。上述组合加工工艺和背部透射零位补偿检测方案可以显著提升高次离轴凸非球面反射镜的加工精度和效率。  相似文献   

9.
为了实现对大口径高次非球面镜的面形精度检测,本文针对一个内径572 mm、外径800 mm的半环形凹高次非球面反射镜,进行补偿检测系统设计和轻量化分析。基于三级像差理论,采用双透镜与单反射面的结构对非球面反射镜进行补偿检测,得到均方根(RMS)值为0.0037λ(λ=632.8 nm)的补偿检测系统。采用三角形孔对高次非球面镜进行轻量化,轻量化后镜体质量小于30 kg,轻量化率为32.7%。结合机械支撑结构,对高次非球面镜与支撑结构在自身重力作用下进行有限元分析。当光轴与重力方向平行时,RMS值为0.012λ。当光轴与重力方向垂直时,RMS值为0.013λ,镜体所受最大应力为1.308×105 Pa,机械支撑结构所受最大应力为1.381×105 Pa,非球面镜和支撑结构所受应力都小于各自材料的极限应力。  相似文献   

10.
为了解决当大口径的凸非球面使用特殊材料(如采用碳化硅)时,无法使用传统的检测方法——背部检验的矛盾,研究了使用计算全息法(CGH)来检测大口径凸非球面的原理和方法,并对如何提高计算全息效率进行了分析计算.  相似文献   

11.
Xiaokun Wang 《中国激光》2012,39(s1):108002
For the purpose to test large and off-axis aspheric surfaces without the aid of other null optics, a novel method combined subaperture stitching and interferometry is introduced. The basic principle and theory of the technique are researched, the synthetical optimization stitching mode and effective stitching algorithm are established based on homogeneous coordinates transformation and simultaneous least-squares fitting. The software of SSI is devised, and the prototype for testing of large aspheres by SSI is designed and developed. The experiment is carried on with three subapertures for an off-axis sic aspheric mirror with a clear aperture of 230×141 (mm). For the compare and validation, the asphere is also tested by null compensation, the synthesized surface map is consistent to the entire surface map from the null test, the differences of PV and RMS error are 0.023λ and 0.014λ, respectively; and the relative errors of PV and RMS are 0.57% and 2.74%, respectively .The results conclude that this technique is feasible and accurate. It enables the non-null testing of parts with greater asphericity and larger aperture.  相似文献   

12.
用于高光谱成像仪的大视场离轴三反系统设计   总被引:1,自引:0,他引:1  
大视场、高分辨力星载高光谱成像仪已成为空间遥感的迫切需求,要求其望远系统在宽视场内具有高空间分辨力。在共轴三反系统的几何光学成像理论基础上,研究了用于高光谱成像仪的大视场离轴三反消像散(TMA)望远系统的设计问题,编制了初始结构计算程序,采用视场离轴方式,设计了一个波段范围0.4~2.5μm、焦距360 mm、相对孔径1:4、线视场11.42°的离轴三反望远系统,其主镜为6次非球面,次镜和三镜为二次曲面,考虑到市售探测器的限制,提出了视场分离的分光方法,在离轴三反系统的焦平面附近加一个刀口反射镜实现视场分离。在奈奎斯特空间频率28 lp/mm处,调制传递函数大于0.75,成像质量接近衍射极限。  相似文献   

13.
为了满足空间同轴三反相机对大口径凸非球面高精度的面形质量和精确的几何参数控制要求,提出以计算机控制确定性研抛工艺为核心的多工序组合加工及检测技术。在加工阶段,首先利用超声振动磨削技术对非球面进行面形铣磨,其次应用机器人对非球面面形进行快速研磨和粗抛,最后采用离子束修形技术实现非球面的高精度加工;在检测阶段,首先利用三坐标测量机对铣磨和研磨过程中非球面的面形及几何参数进行控制,进入干涉仪测量范围后,再采用Hindle球法对非球面光学参数进行干涉检测。结合工程实例,对一口径520 mm的凸双曲面次镜进行了加工及检测,其面形精度RMS为0.015(=632.8 nm),几何参数控制精度△R误差为0.1 mm、△K优于0.1%,满足光学设计技术指标要求。  相似文献   

14.
为了无需辅助元件就能够实现对大口径非球面的检测,将子孔径拼接技术与干涉技术相结合,提出了一种利用子孔径拼接干涉检测非球面的新方法.分析了该技术的基本原理,并基于齐次坐标变换、最小二乘拟合建立了一种综合优化的拼接模型,在此基础上初步设计和搭建了子孔径拼接干涉检测装备.利用该方法对一口径为350 mm的双曲面进行了5个子孔径的拼接检测,得到拼接后的全口径面形误差的PV值为0.319λ,RMS值为0.044λ(=632.8 nm).为了对比和验证,对该非球面进行了零位补偿检测,两种方法测量所得的全口径面形分布是一致的,其PV值和RMS值的偏差分别为0.032λ和0.004λ.实验结果表明:该数学模型和拼接算法是准确可行的,从而提供了一种非零补偿测试大口径非球面的手段.  相似文献   

15.
传统的无遮拦三反射镜光学系统设计是先设计轴对称反射系统,然后通过偏光瞳、偏视场或者两者结合的方法来实现系统无遮拦设计,系统中不可避免地用到了离轴非球面反射镜。以矢量波像差理论的相关结论出发,将反射镜的倾斜作为系统的优化变量,利用轴对称非球面反射镜实现了无遮拦三反射系统的设计。分析了此种系统的设计思路及步骤,设计了焦距为1 000 mm、视场角为1020、F数为10的三反射镜光学系统,系统结构紧凑,成像质量接近衍射极限。该系统与其他无遮拦三反光学系统相比,最大的优点是系统中的非球面均为轴对称反射面,极大地降低了系统成本。  相似文献   

16.
为实现小口径Hindle透镜对大口径凸非球面的高精度检测,提出了一种新的凸非球面无光焦度双透镜Hindle检验方法,通过加入无光焦度校正透镜有效解决了传统Hindle检验的不足.对口径180mm、半径380mm、偏心率2.8的凸非球面进行了设计分析,分别给出了不同光焦度分配及不同无光焦度双透镜间距时系统的残余波像差曲线图,得出较优的系统残余波像差为0.0006λ,验证了该方法的可行性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号