首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Luminescence studies of CaS:Bi nanocrystalline phosphors synthesized by wet chemical co-precipitation method and irradiated with swift heavy ions (i.e. O7+-ion with 100 MeV and Ag15+-ion with 200 MeV) have been carried out. The samples have been irradiated at different ion fluences in the range 1 × 1012-1 × 1013 ions/cm2. The average grain size of the samples before irradiation was estimated as 35 nm using line broadening of XRD (X-ray diffraction) peaks and TEM (transmission electron microscope) studies. Our results suggest a good structural stability of CaS:Bi against swift heavy ion irradiation. The blue emission band of CaS:Bi3+ nanophosphor at 401 nm is from the transition 3P→ 1S0 of the Bi3+. We have observed a decrease in lattice constant (a) and increase of optical energy band gap after ion irradiation. We presume this change due to grain fragmentation by dense electronic excitation induced by swift heavy ion. We have studied the optical and luminescent behavior of the samples by changing the ion energy and also by changing dopant concentration from 0.01 mol% to 0.10 mol%. It has been examined that ion irradiation enhanced the luminescence of the samples.  相似文献   

2.
A detailed investigation of the surface morphology of the pristine and swift heavy ion (SHI) irradiated La0.7Sr0.3MnO3 (LSMO) thin film using atomic force microscope (AFM) is presented. Highly c-axis oriented LSMO thin films were grown on LaAlO3 (1 0 0) (LAO) substrates by the pulsed laser deposition (PLD) technique. The films were annealed at 800 °C for 12 h in air (pristine films) and subsequently, irradiated with SHI of oxygen and silver. The incident fluence was varied from 1 × 1012 to 1 × 1014 ions/cm2 and 1 × 1011 to 1 × 1012 ions/cm2 for oxygen and silver ions, respectively. X-ray diffraction (XRD) studies reveal that the irradiated films are strained. From the AFM images, various details pertaining to the surface morphology such as rms roughness (σ), the surface rms roughness averaged over an infinite large image (σ), fractal dimension (DF) and the lateral coherence length (ξ) were estimated using the length dependent variance measurements. In case of irradiated films, the surface morphology shows drastic modifications, which is dependent on the nature of ions and the incident fluence. However, the surface is found to remain self-affine in each case. In case of oxygen ion irradiated films both, σ and DF are observed to increase with fluence up to a dose value of 1 × 1013 ions/cm2. With further increase in dose value both σ and DF decreases. In case of silver ion irradiated films, σ and DF decrease with increase in fluence value in the range studied.  相似文献   

3.
Intragranular bubbles grow in the nuclear fuel by diffusion and precipitation of fission gases, mainly xenon; and are ultimately destroyed, under irradiation, by fission fragments. This article will attempt to determine the in-pile bubble distributions taking into account the evolution of the concentration profile around a bubble during its growth and the destruction process by fission fragments. From these distributions a relation between the bubble mean radius and the diffusion coefficient of xenon can be established, allowing the determination, from experimental measurements of intragranular bubble sizes, of the in-pile Xe diffusion coefficient in UO2. The estimated activation energy (0.9 eV) is about one order of magnitude lower than the widely used value of 3.9 eV determined from out-of-pile experiments. This effect can be attributed to the presence of point defects created by the irradiation.  相似文献   

4.
Swift heavy ions (SHI) induce high densities of electronic excitations in narrow cylindrical volumes around their path. These excitations have been used to manipulate the size and shape of noble metal nanoparticles embedded in silica matrix. Films containing noble metal nanoparticles were prepared by magnetron co-sputtering techniques. SHI irradiation of films resulted in the formation of prolate Ag nanoparticles with major axis along the ion beam direction. It has been observed that the nanoparticles smaller than the track size dissolve and other grow at their expense, while the nanoparticles larger than track size show deformation with major axis along the ion beam direction. The aspect ratio of elongated nanoparticles is found to be the function of electronic energy loss and ion fluence. Present report will focus on the role of size and volume fraction on the shape deformation of noble metal nanoparticles by electronic excitation induced by SHI irradiation. The detailed results concerning irradiation effects in silica-metal composites for dissolution, growth and shape deformation will be discussed in the framework of thermal spike model.  相似文献   

5.
Modifications of the C70 molecule (fullerene) under swift heavy ion irradiation are investigated. C70 thin films were irradiated with 120 MeV Au ions at fluences from 1 × 1012 to 3 × 1013 ions/cm2. The energetic ion impacts lead to the destruction of the C70 molecule. To investigate the stability of C70 fullerene, the damage cross-section and radius of the damaged cylindrical zones are evaluated by fitting the evanescence of C70 vibration modes recorded by Raman spectroscopy. Conductivity measurements together with Raman and optical absorption studies revealed that an irradiation fluence of 3 × 1013 ions/cm2 results in complete amorphization of the carbon structure of the fullerene molecules.  相似文献   

6.
Nanophases of TiO2 are achieved by irradiating polycrystalline thin films of TiO2 by 100 MeV Au ion beam at varying fluence. The surface morphology of pristine and irradiated films is studied by atomic force microscopy (AFM). Phase of the film before and after irradiation is identified by glancing angle X-ray diffraction (GAXRD). The blue shift observed in UV-vis absorption edge of the irradiated films indicates nanostructure formation. Electron spin resonance (ESR) studies are carried out to identify defects created by the irradiation. The nanocrystallisation induced by SHI irradiation in polycrystalline thin films is studied.  相似文献   

7.
The band-structure, interface and surface modification by swift heavy ion irradiation of In0.55Ga0.45As/InP multi quantum wells have been studied using photoluminescence, high resolution X-ray diffraction and atomic force microscopy. Three distinct photoluminescence peaks were observed for as-grown samples at low temperature and at room temperature the peaks merge together. Detailed analysis has been carried out to understand the origin of additional satellite peaks. A peak shift of about 23 nm was observed for irradiated samples after annealing. Highly-ordered satellite peaks were observed in X-ray scans of as-grown and Ag ion irradiated samples. In comparison, Au ion irradiated sample showed stronger interfacial degradation as seen by the diminished satellite peaks. The peak position of the irradiated samples shifted to the compressive side and was broadened in comparison with as-grown samples. The as-grown and annealed samples show smooth surfaces whereas irradiation results in nano-sized dot/island types of structures at the surface. The results are discussed in the light of complementary information provided by these techniques.  相似文献   

8.
Eu-activated Y2O3 phosphors were prepared by combustion synthesis and also by precipitation techniques. Photoluminescence and X-ray excited luminescence of prepared Y2O3:Eu phosphor, under two different techniques were compared and reported in this paper. Y2O3:Eu3+ phosphor were prepared by precipitation technique followed by annealing at 900 °C. It gives cubic nature of the particle that may be more favourable for high lumen output. X-ray excited luminescence of Y2O3:Eu3+ phosphors also reported in this paper.  相似文献   

9.
Transparent conducting cadmium stannate thin films were prepared by spray pyrolysis method on Corning substrate at a temperature of 525 °C. The prepared films are irradiated using 120 MeV swift Ag9+ ions for the fluence in the range 1 × 1012 to 1 × 1013 ions cm−2 and the structural, optical and electrical properties were studied. The intensity of the film decreases with increasing ion fluence and amorphization takes place at higher fluence (1 × 1013 ions cm−2). The transmittance of the films decreases with increasing ion fluence and also the band gap value decreases with increasing ion fluence. The resistivity of the film increased from 2.66 × 10−3 Ω cm (pristine) to 5.57 × 10−3 Ω cm for the film irradiated with 1 × 1013 ions cm−2. The mobility of the film decreased from 31 to 12 cm2/V s for the film irradiated with the fluence of 1 × 1013 ions cm−2.  相似文献   

10.
A recent claim by Paul of a systematic gas-solid difference in stopping cross sections for ions such as nitrogen and oxygen in the velocity range v ? v0 is studied on the basis of existing experimental data. We find that all existing data support the commonly known Z2 structure which, by and large, follows the valence structure of the target material. Existing experimental evidence is not found to support a specific gas-solid difference in the velocity range under consideration. The possibility of such an effect due to a gas-solid difference in charge state is rejected on theoretical grounds. Data for compound gases and solids are found to be well described by the Bragg additivity rule.We have also studied nitrogen/helium and oxygen/helium stopping ratios which determine the so-called effective-charge ratio. Taking into account the scatter of experimental data, we do not find clear evidence against Northcliffe’s assumption of a stopping ratio independent of Z2 and common for gases and solids in the considered velocity range, although the absolute value appears too high.  相似文献   

11.
We studied the migration dynamics of oxygen point defects in UO2 which is the primary ceramic fuel for light-water reactors. Temperature accelerated dynamics simulations are performed for several initial conditions. Though the migration of the single interstitial is much slower than that of the vacancy, clustered interstitial shows faster migration than those. This observation gives us important insight on the formation mechanism of high-burnup restructuring, including planar defects and grain sub-division (the rim structure), found in UO2.  相似文献   

12.
We have performed ab initio total energy calculations to investigate the behavior of helium and its diffusion properties in uranium dioxide (UO2). Our investigations are based on the density functional theory within the generalized gradient approximation (GGA). The trapping behavior of He in UO2 has been modeled with a supercell containing 96-atoms as well as uranium and oxygen vacancy trapping sites. The calculated incorporation energies show that for He a uranium vacancy is more stable than an oxygen vacancy or an octahedral interstitial site (OIS). Interstitial site hopping is found to be the rate-determining mechanism of the He diffusion process and the corresponding migration energy is computed as 2.79 eV at 0 K (with the spin-orbit coupling (SOC) included), and as 2.09 eV by using the thermally expanded lattice parameter of UO2 at 1200 K, which is relatively close to the experimental value of 2.0 eV. The lattice expansion coefficient of He-induced swelling of UO2 is calculated as 9 × 10−2. For two He atoms, we have found that they form a dumbbell configuration if they are close enough to each other, and that the lattice expansion induced by a dumbbell is larger than by two distant interstitial He atoms. The clustering tendency of He has been studied for small clusters of up to six He atoms. We find that He strongly tends to cluster in the vicinity of an OIS, and that the collective action of the He atoms is sufficient to spontaneously create additional point defects around the He cluster in the UO2 lattice.  相似文献   

13.
Ion beam processing of organic/inorganic thin films has been shown to be an effective means in converting polymeric films into their final ceramic-like state. In this study, hybrid sol-gel derived thin films based on TEOS (tetraethylorthosilicate) Si(OC2H5)4 and MTES (methyltriethoxysilane) CH3Si(OC2H5)3 were prepared and deposited on Si substrates by spin coating. After the films were allowed to air dry, they were heat treated at 300 °C for 10 min. Ion irradiation was performed at room temperature using 125 keV H+ and 250 keV N2+ ions with fluences ranging from 1 × 1014 to 5 × 1016 ions/cm2. FT-IR and Raman spectroscopies were used to quantify the chemical structural transformations which occurred including the evolution of the organic components, the cross-linking of silica clusters, and the clustering of carbon.  相似文献   

14.
The effect of swift heavy ion irradiation on hydroxyapatite (HAp) ceramic - a bone mineral was investigated. The irradiation experiment was conducted using oxygen ions at energy of 100 MeV with three different fluences of 1012, 1013, 1014 ions/cm2. The irradiated samples were characterized by glancing angle X-ray diffraction (GXRD), atomic force microscopy (AFM), dynamic light scattering (DLS), photoluminescence spectroscopy (PL), scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDAX). GXRD confirmed incomplete amorphisation of HAp with increase in fluence. There was considerable reduction in particle size on irradiation leading to nanosized HAp (upto 53 nm). PL studies showed emission in the visible wavelength region. The irradiated samples exhibited better bioactivity than the pristine HAp.  相似文献   

15.
Thin films of Fe3O4 have been deposited on single crystal MgO(1 0 0) and Si(1 0 0) substrates using pulsed laser deposition. Films grown on MgO substrate are epitaxial with c-axis orientation whereas, films on Si substrate are highly 〈1 1 1〉 oriented. Film thicknesses are 150 nm. These films have been irradiated with 200 MeV Ag ions. We study the effect of the irradiation on structural and electrical transport properties of these films. The fluence value of irradiation has been varied in the range of 5 × 1010 ions/cm2 to 1 × 1012 ions/cm2. We compare the irradiation induced modifications on various physical properties between the c-axis oriented epitaxial film and non epitaxial but 〈1 1 1〉 oriented film. The pristine film on Si substrate shows Verwey transition (TV) close to 125 K, which is higher than generally observed in single crystals (121 K). After the irradiation with the 5 × 1010 ions/cm2 fluence value, TV shifts to 122 K, closer to the single crystal value. However, with the higher fluence (1 × 1012 ions/cm2) irradiation, TV again shifts to 125 K.  相似文献   

16.
Fe-54at.%Rh thin films were irradiated with 10 MeV iodine ions at room temperature. Before and after the irradiations, the changes in magnetic properties and the lattice structure of the samples were studied by means of a SQUID magnetometer and X-ray diffraction. For the low fluence irradiation, the SQUID measurement at 20 K shows that the anti-ferromagnetic region of the thin film is changed into ferromagnetic region by the irradiation. As the film thickness is much smaller than the ion range, we can discuss the relationship between the density of energy deposited by ions and the change in magnetization quantitatively. For the high fluence irradiation, the magnetization of the film is strongly decreased by the irradiation, which can be explained as due to the change in lattice structure from B2 into A1 structure by the irradiation.  相似文献   

17.
Defects induced by high-energy electrons in Si-SiO2 structure have been studied by the optically stimulated electron emission (OSEE) method. Si-SiO2 structures with oxide thickness of 100 nm are irradiated with 23 MeV electrons for different durations. It is shown that most of the defects created by electron irradiation at the interface and in the oxide bulk are vacancies like E′-centers. Most of the photoemission activity changes are observed during low doses electron irradiation. Some uncharged defects like diamagnetic oxygen-deficient centers are also observed, together with E′-centers.  相似文献   

18.
Irradiation resistance of as-studied scintillating glass samples were tested under the 60Co γ-ray radiation at doses between 60 and 700 Gy. Photoluminescence properties of glasses with and without cerium ions were investigated to show the effect of cerium (III) on the luminescence of ZnO. Ultraviolet and visible optical transmittance spectra were compared before and after irradiation treatment. The so-called radiation-induced absorption coefficient (RIAC) was introduced to compare more effectively the radiation damage on glass samples. The much reduced transmittance change and decreased RIAC value in UV-Vis region indicate that the density of electron centers and hole centers caused by radiation decreased, which helps to confirm that the reduction and oxidation reaction of cerium ions took place in radiation process. From RIAC curves, it can be seen that TiO2 enhances the irradiation resistance of sample in UV region. However, high TiO2 content has negative effect on visible transmittance of glasses after the higher dose irradiation (700 Gy).  相似文献   

19.
The most likely substituting positions of impurity oxygen ions in LiBaF3 crystals are studied using the general utility lattice program (GULP). The calculated results indicate that the main defect model is [] in the O:LiBaF3 crystal. The electronic structures of the LiBaF3 crystal with the defect [] are calculated using the DV-Xα method. It can be concluded from the electronic structures that the LiBaF3 crystal with the defect [] will exhibit a 217-280 nm absorption band and the impurity oxygen will decrease core-valence luminescence yield.  相似文献   

20.
Cadmium sulfide and cadmium telluride thin films are irradiated with high energy heavy ion beam to study the irradiation induced effects in these films. The polycrystalline thin film samples deposited by spray pyrolysis are irradiated with 60 MeV Oxygen ions using tandem Pelletron accelerator. The X-ray diffraction patterns exhibit a reduction in peak intensities in both CdS and CdTe films. The grain size decrease with fluence is observed for both CdS and CdTe films, with more decrease for CdTe films. The AFM results support this observation. The films show opposite trend in the variation of electrical resistivity with irradiation fluence. A decrease in resistivity is observed for CdS films due to an increase of carrier concentration arising by the creation of sulfur vacancies during the irradiation. The creation of sulfur vacancies is confirmed by XPS studies. The stoichiometric changes seen from XPS studies support this observation. An enhancement of grain boundary scattering due to the reduction of grain size leads to the increase of electrical resistivity for CdTe films.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号