首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In strong atmospheric turbulence, the asymptotic on-axis scintillation behaviors of Laguerre Gaussian (LG) beams are examined. To arrive at the strong-turbulence solution, we utilize the existing filtering approach for weak-turbulence solutions and our recently reported weak-turbulence scintillation index formula for LG beams. In the limiting case, our solution correctly predicts the asymptotic strong-turbulence behavior of Gaussian beam wave scintillation. Investigation of the scintillations versus the propagation distance, source size, wavelength and refractive index structure parameter lead to the conclusion that the LG beams with higher order radial modes can provide less scintillation. The results are applicable to long-haul atmospheric optical communication links.  相似文献   

2.
We present scintillation calculations in weak atmospheric turbulence for partially coherent general beams based on the extended Huygens–Fresnel integral and a Matlab function designed to handle expressions both of the average intensity and the average squared intensity. This way, the integrations are performed in a semi-analytic manner by the associated Matlab function, and this avoids lengthy, time-consuming and error prone hand derivations. The results are obtained for the partially coherent fundamental and higher-order sinusoidal and annular Gaussian beams. By plotting the scintillation index against the propagation distance and source size, we illustrate the on-axis scintillation behaviors of these beams. Accordingly, it is found that within specific source and parameter ranges, partially coherent fundamental, higher-order sinusoidal and annular Gaussian beams are capable of offering less scintillations, in comparison to the fundamental Gaussian beam.  相似文献   

3.
Scintillations of Laguerre–Gaussian (LG) beams for weak atmospheric turbulence conditions are derived for on-axis receiver positions by using Huygens–Fresnel (HF) method in semi-analytic fashion. Numerical evaluations indicate that at the fully coherent limit, higher values of radial mode numbers will give rise to more scintillations, at medium and low partial coherence levels, particularly at longer propagation distances, scintillations will fall against rises in radial mode numbers. At small source sizes, the scintillations of LG beams having full coherence will initially rise, reaching saturation at large source sizes. For LG beams with low partial coherence levels, a steady fall toward the larger source sizes is observed. Partially coherent beams of medium levels generally exhibit a rising trend toward the large source sizes, also changing the respective positions of the related curves. Beams of low coherence levels will be less affected by the variations in the refractive index structure constant.  相似文献   

4.
Stemming from the results of our earlier investigations, the concept of area scintillation is introduced, which takes into account the intensity distribution over the receiver plane. In this context, the area scintillation of fundamental Gaussian and annular beams is formulated, numerically evaluated and graphically illustrated. From the comparison, it is seen that, under the same source power conditions, annular Gaussian beams provide much less scintillations than the fundamental Gaussian beams at small source size. At large source sizes and at shorter propagation distances, annular beams are still favorable, but, as the propagation range is extended, the reverse becomes true. A review of previous findings leading up to the newly introduced concept is also presented.  相似文献   

5.
The scintillation index of a laser array beam is analytically derived and numerically evaluated for weak turbulence conditions. On-axis as well as off-axis positions of the receiver plane are considered. Our graphical illustrations prove that at longer propagation ranges and at some midrange radial displacement parameters, laser array beams exhibit less scintillations, when compared to a fundamental Gaussian beam. However, when compared among themselves, laser array beams tend to have reduced scintillations with rising numbers of beamlets, longer propagation wavelengths, at midrange radial displacement parameters, at intermediate Gaussian source sizes, at bigger inner scales and smaller outer scales of turbulence. However, in this improvement, the number of beamlets does not seem to have a major role. PACS 42.25.Dd; 42.25.Ja; 42.25.Kb  相似文献   

6.
For a weak turbulence propagation environment, the scintillation index of the lowest order Bessel–Gaussian beams is formulated. Its triple and single integral versions are presented. Numerical evaluations show that at large source sizes and large width parameters, when compared at the same source size, Bessel–Gaussian beams tend to exhibit lower scintillations than the Gaussian beam scintillations. This advantage is lost however for excessively large width parameters and beyond certain propagation lengths. Large width parameters also cause rises and falls in the scintillation index of off-axis positions toward the edges of the received beam. Comparisons against the fundamental Gaussian beam are made on equal source size and equal power basis. PACS  42.25.Dd; 42.25.Bs; 42.68.Bz; 42.68.-w  相似文献   

7.
The intensity fluctuation of a partially coherent laser beam array is examined. For this purpose, the on-axis scintillation index at the receiver plane is analytically formulated via the extended Huygens–Fresnel diffraction integral in conditions of weak atmospheric turbulence. The effects of the propagation length, number of beamlets, radial distance, source size, wavelength of operation and coherence level on the scintillation index are investigated for a horizontal propagation path. It is found that, regardless of the number of beamlets, the scintillation index always rises with an increasing propagation length. If laser beam arrays become less coherent, the scintillation index begins to fall with growing source sizes. Given the same level of partial coherence, slightly less scintillations will occur when the radial distance of the beamlets from the origin is increased. At partial coherence levels, lower scintillations are observed for larger numbers of beamlets. Both for fully and partially coherent laser beam arrays, scintillations will drop on increasing wavelengths.  相似文献   

8.
As an extension of our previous study, the area scintillation aspects of Bessel Gaussian and modified Bessel Gaussian beams of zeroth order are investigated. The analysis is carried out on the basis of equal source sizes and equal source powers. It is found that, when compared on equal source size basis, modified Bessel Gaussian beams always have less area scintillations than a Gaussian beam, while Bessel Gaussian beams exhibit more area scintillations. Comparison on equal source power basis, however, removes the advantage of modified Bessel Gaussian beams, that is, their area scintillations become nearly the same as those of the Gaussian beam. On the other hand, for the case of equal source powers, Bessel Gaussian beams with larger width parameters continue to have higher area scintillations than the Gaussian beam. We provide graphical illustrations for profiles of equal source size beams, equal source power beams and the curves to aid the selection of equal source power beams.  相似文献   

9.
Scintillation evaluations for Laguerre-Gaussian (LG) beams for slant paths are made using Rytov approximation. On- and off-axis scintillation is formulated and calculated up to several tens of kilometers of slant distances for different zenith angles. Scintillation index variations against radial receiver point and different source sizes are also investigated. In all cases evaluated, it is found that LG beams with higher radial mode numbers result in less scintillation than Gaussian beam. Kolmogorov spectrum function is utilized in the scintillation calculations.  相似文献   

10.
For sinusoidal beams, minimization of scintillation index is carried out against the displacements parameters. It is found that x-y asymmetric cosh-Gaussian beam fulfills the requirements of such optimum beam. Our minimization procedure reveals that the optimum beam is achieved by continually focusing it at the chosen propagation length and by further adjusting displacements parameters to be propagation distance dependent. Scintillation index of thus constructed optimum beam is formulated and numerically evaluated. Our graphical comparisons entailing collimated and focused versions of cos-, cosh-Gaussian, annular-Gaussian and Gaussian beams show that the optimum beam yields the lowest scintillations provided that propagation range is less than or equal to the focusing distance.  相似文献   

11.
Using laser beams with less than perfect spatial coherence is an effective way of reducing scintillations in free-space optical communication links. We report a proof-of-principle experiment that quantifies this concept for a particular type of a partially coherent beam. In our scaled model of a free-space optical communication link, the beam is composed of several partially overlapping fundamental Gaussian beams that are mutually incoherent. The turbulent atmosphere is simulated by a random phase screen imprinted with Kolmogorov turbulence. Our experiments show that for both weak-to-intermediate and strong turbulence an optimum separation between the constituent beams exists such that the scintillation index of the optical signal at the detector is minimized. At the minimum, the scintillation reduction factor compared with the case of a single Gaussian beam is substantial, and it is found to grow with the number of constituent beams. For weak-to-intermediate turbulence, our experimental results are in reasonable agreement with calculations based on the Rytov approximation.  相似文献   

12.
By using the semi-analytic approach introduced earlier, we formulate and subsequently evaluate the irradiance fluctuations of partially coherent super Lorentz Gaussian beams for orders of 10 and 11. Within the range of examined source and propagation conditions, our calculations show that there will be less fluctuations at short propagation distances as the Lorentzian property is increased. But the reverse will be applicable, if the longer propagation distances are considered. The use of focusing will cause reductions, particularly for beams with increased Lorentzian property.  相似文献   

13.
Scintillation index of partially coherent annular and partially coherent flat-topped Gaussian beams propagating in horizontal links is found at the receiver origin when these beams propagate in extremely strong atmospheric turbulence. Scintillation index of coherent versions of such beams attain unity saturation value whereas the decrease in the degree of source coherence results in the decrease of the scintillations. At a fixed degree of partial coherence, thin ring sized annular beams possess smaller scintillations than thick ones. For partially coherent flat-topped Gaussian beams, higher flatness yields smaller intensity fluctuations. In extremely strong turbulence, partially coherent annular and partially coherent flat-topped Gaussian beams have smaller scintillations when compared to partially coherent single Gaussian beam scintillations.  相似文献   

14.
For the strong atmospheric turbulence regime, the asymptotic on-axis scintillation behavior of annular, cosh and cos Gaussian beams is theoretically derived and illustrated with numerical examples. It is observed from the plots that annular Gaussian beams exhibit more scintillations than a Gaussian beam, regardless of the amplitude coefficient and source size settings. For small source sizes, cosh Gaussian beams seem to have an advantage over Gaussian beams in terms of reduced scintillation, but for large source sizes a switchover occurs where cos Gaussian beams assume the advantage. Analysis of the effect of inner scale value shows that scintillations increases for all beams as the inner scale increases.  相似文献   

15.
We provide the scintillation formulation for a multiwavelength source. Within this context, the scintillation aspects of Gaussian, cos, cosh and annular Gaussian beams are investigated. For all situations examined, it is found that for a source comprising many wavelengths, there will be less scintillations as compared to a single wavelength source of the lowest wavelength and but the reverse will be true if the comparison is with respect to the single wavelength source of the highest wavelength. The same is observed at all propagation distances, source sizes, on-axis and off-axis positions considered. Additionally, it is seen that the scintillation characteristics of multiwavelength sources will follow similar trends of single wavelength sources. The analysis is based on the Rytov approximation, therefore our results are valid for conditions of weak atmospheric turbulence.  相似文献   

16.
The effect of spherical aberration on scintillations of Gaussian beams in weak, moderate and strong turbulence is studied using numerical simulation method. It is found that the effect of the negative spherical aberration on the on-axis scintillation index is quite different from that of the positive spherical aberration. In weak turbulence, the positive spherical aberration results in a decrease of the on-axis scintillation index on propagation, but the negative spherical aberration results in an increase of the on-axis scintillation index when the propagation distance is not large. In particular, in weak turbulence the negative spherical aberration may cause peaks of the on-axis scintillation index, and the peaks disappear in moderate and strong turbulence, which is explained in physics. The strong turbulence leads to less discrepancy among scintillations of Gaussian beams with and without spherical aberration.  相似文献   

17.
With the help of a tensor method, we derive an explicit expression for the on-axis scintillation index of a circular partially coherent dark hollow (DH) beam in weakly turbulent atmosphere. The derived formula can be applied to study the scintillation properties of a partially coherent Gaussian beam and a partially coherent flat-topped (FT) beam. The effect of spatial coherence on the scintillation properties of DH beam, FT beam and Gaussian beam is studied numerically and comparatively. Our results show that the advantage of a DH beam over a FT beam and a Gaussian beam for reducing turbulence-induced scintillation increases particularly at long propagation distances with the decrease of spatial coherence or the increase of the atmospheric turbulence, which will be useful for long-distance free-space optical communications.  相似文献   

18.
In a weakly turbulent atmosphere governed by the non-Kolmogorov spectrum, the on-axis scintillation index is formulated and evaluated when the incidence is an annular Gaussian type. When the power law of the non-Kolmogorov spectrum is varied, the scintillation index first increases, and reaches a peak value, then starts to decrease, and eventually approaches zero. The general trend is that when turbulence has a non-Kolmogorov spectrum with power law larger than the Kolmogorov power law, the scintillation index values become smaller. For all power laws, collimated annular Gaussian beams exhibit smaller scintillations when compared to pure Gaussian beams of the same size. Intensity fluctuations at a fixed propagation distance diminish for the non-Kolmogorov spectrum with a very large power law, irrespective of the focal length and the thickness of optical annular Gaussian sources.  相似文献   

19.
Taking phase error, turbulent atmosphere, jitter, vacancy factor and tilt error into consideration, we propose a general propagation formula for both coherent and incoherent combined beams with different kinds of aberrations. Comparative study on the propagation performance of coherent and incoherent combined beams is presented. Beam propagation factor (BPF) defined as laser output power in a specified far-field bucket divided by the total output power radiating from the effective near-field exit aperture of the laser beam is introduced as the beam quality factor to give a quantitative study. It is revealed that the coherent combined beam has great advantage when propagating in free-space compared with the incoherent combined beams. However, the coherent combined beam is more sensitive to the environmental aberrations, and the beam quality degrades faster with an increase in the aberrations’ intensity. Scintillation index as the high moments of the combined intensity field is also studied. It is revealed that both coherent and incoherent combined beams exhibit less scintillations compared with a single-aperture beam, and the incoherent combined beam demonstrates better scintillations reducing the performance. Our methodology offers an all-round performance evaluation on the two kinds of laser systems.  相似文献   

20.
Off-axis underwater scattering of spatially partially coherent Multi-Gaussian Schell-Model (MGSM) beams are compared with fully coherent Gaussian beams in both a stationary setting and in the presence of mechanically agitated scatterers in underwater environments. The analysis is carried out by comparing the mean intensities of scattered light, the normalized variance, and the scintillation index in various scenarios. Results indicate that fully coherent beams have increased off-axis scattered light variations in the presence of moving scatterers as compared with a spatially partially coherent MGSM beam. Additionally, in a stationary environment the coherent beam has less overall variations as expected due to the nature of constructing partially coherent MGSM beams. Metrics of normalized variance, scintillation index, and overall average intensity are discussed in the context of potential beam localization, reduced scattering, and off-axis detection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号