首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
运用智能综合大气采样仪采集了南太湖地区湖州市大气PM 10和PM 2.5样品,采用高效液相色谱检测了该样品中16种多环芳烃化合物,通过苯并(a)芘(Ba P)致癌等效浓度、人群终身超额致癌风险和预期寿命损失等指标,评价湖州市大气PM2.5中多环芳烃的人群健康风险。结果表明:全市大气PM 2.5中多环芳烃全年总平均浓度为11.59 ng/m 3,季平均浓度范围在4.775~23.98 ng/m3之间,季节之间呈现一定的变化,冬季秋季春季夏季;全市大气PM 2.5中多环芳烃的苯并(a)芘总致癌等效浓度(TEQ)年均值为1.138 ng/m3,污染所致的成人和儿童的终身超额致癌风险分别为8.7×10-6和6.0×10-6,成人的预期寿命损失为44.5 min。  相似文献   

2.
建立了以二极管阵列检测器和荧光检测器串联的高效液相色谱分析方法,确定荧光检测器最佳发射波长为390nm,在标样未完全分离的情况下,采用双激发波长有效地改善了色谱分离条件。在设定的色谱条件下,16种PAHs的检出限为0.11μg/L~39.83μg/L,平均回收率为76.7%~98.3%,相对标准偏差为3.6%~14.4%。在南昌市布设5个大气采样点,测定PM2.5中多环芳烃含量,结果表明,八一广场多环芳烃总量值(29.497ng/m)3、苯并(a)芘平均浓度值(3.122ng/m)3、苯并(a)芘等效致癌浓度值(5.254ng/m)3最高。  相似文献   

3.
为全面了解辽宁省大气可吸入颗粒物污染状况,2004年在省内选取了5个城市进行分季节采样,并对颗粒物中重金属元素含量和美国优先控制的16种多环芳烃(PAHs)进行了定量研究。结果表明,大气PM10和PM2.5中重金属元素和PAHs污染较重,且冬季高于其它季节,重金属元素和PAHs主要富集在PM2.5及以下细小颗粒物中。  相似文献   

4.
采用二极管阵列检测器(PDA),建立了加速溶剂萃取(ASE)-超高效液相色谱(UPLC)定性定量测定大气PM2.5中16种多环芳烃(PAHs)的方法。通过优化预处理过程及柱温、梯度洗脱程序等一系列色谱分离条件,实现了14 min内16种PAHs的完全基线分离。优化条件下测定PAHs线性关系好,检出限为0.50~2.0μg/L,样品加标回收率为75%~98%,相对标准偏差为0.54%~8.97%。结果表明,该方法用于测定大气PM2.5中PAHs的含量,具有检出限低、灵敏度高、重复性好等优点,是一个较为可靠的检测方法。  相似文献   

5.
为探究遵义市秋、冬季PM2.5中多环芳烃(PAHs)的污染特征及来源,于2020年10月~2021年1月采集了遵义市大连路、忠庄和新蒲3个采样点位PM2.5样品,利用GC-MS对样品中16种优控PAHs进行分析,利用特征比值法和多元统计法(PCA-MLR)解析其来源,并采用BaP毒性当量浓度和终生致癌风险模型(ILCR)探讨了PAHs对人体的健康风险。结果表明,研究期间遵义市PM2.5中16种PAHs浓度范围为9.68~108.80 ng/m3,平均值为(30.53±22.63)ng/m3,呈冬季高、秋季低的季节变化趋势。秋、冬季PM2.5中PAHs环数分布特征一致,高环(5~6环)>中环(4环)>低环(2~3环),以中环、高环PAHs为主。PCA-MLR分析表明PAHs主要来自燃煤和生物质燃烧混合源、机动车尾气,其中,燃煤和生物质燃烧对颗粒物中PAHs的来源贡献最大,秋季为50.6%,冬季为54.8%。遵义市冬季PAHs总毒性当量浓度(TEQ...  相似文献   

6.
石家庄市采暖期大气细颗粒物中PAHs污染特征   总被引:2,自引:2,他引:2       下载免费PDF全文
采集2015年12月-2016年2月采暖期石家庄市文教区、交通密集区、居民区和商业交通混合区大气细颗粒物样品,依据HJ 646-2013《环境空气和废气气相和颗粒物中多环芳烃的测定气相色谱-质谱法》分析石家庄市大气细颗粒物中PAHs污染水平及分布特征、气象参数与PAHs相关性,并解析PAHs污染来源.结果表明:石家庄市冬季采暖期大气细颗粒物PM10、PM2.5和PM1.0中ρ(PAHs)的日均值分别为397.66、349.09和272.35 ng/m3,分别是采暖期前(11月1-15日)的6.16、4.62和4.82倍,并且呈交通密集区>居民区>文教区>商业交通混合区的空间分布特点.相对湿度与细颗粒物PM10、PM2.5和PM1.0中ρ(PAHs)均呈显著正相关,R2分别为0.30、0.37和0.33,而风速与三者呈显著负相关,R2分别为-0.39、-0.53和-0.26;PM1.0中具有显著相关的PAHs单体数量多于PM10和PM2.5.根据PAHs环数分布特征及特征化合物比值判断,石家庄市冬季采暖期PAHs污染为燃煤与机动车尾气复合型污染特征,同时餐饮油烟也有一定的贡献.   相似文献   

7.
本研究采用主动采样技术历时一年连续采集大气TSP样品,利用GC-MS分析测试TSP中16-PAHs的质量浓度,分析大气TSP中PAHs的浓度变化特征,成分谱分布规律。研究结果表明:成都TSP中PAHs浓度范围为15.75~295.63 ng/m3,年平均浓度及标准偏差为82.16±53.31 ng/m3,在Spearman相关检验中TSP中PAHs浓度与气温呈显著的负相关性,相关系数为:-0.6855,TSP中PAHs与TSP质量浓度成正相关关系,相关系数为:0.7186,全年大气TSP中PAHs浓度呈现出冬季>春季>秋季≈夏季的季节变化特征。  相似文献   

8.
北京市大气颗粒物中多环芳烃(PAHs)污染特征   总被引:16,自引:9,他引:16  
对北京市2003-09~2004-07的10个月空气中的TSP样品进行了连续采样,周期为1次/周.分析了15种3~7环的PAHs,其中以4~5环为主.∑PAHs浓度及BaP的最大值分别达到705 ng/m3和52 ng/m3;春夏秋冬4季∑PAHs的平均浓度分别为46 ng/m3,16 ng/m3,52 ng/m3,268 ng/m3;BaP的4季平均浓度分别为2.8ng/m3,0.23 ng/m3,3.3 ng/m3,16ng/m3;采暖期∑PAHs平均浓度为非采暖期的9.5倍.在所分析的3种气象条件中,降水能够明显降低PAHs的浓度;非采暖期的PAHs浓度随温度的升高而降低,采暖期的浓度与温度没有明显的相关性;采暖期风速水平的增加会导致PAHs浓度的下降,而非采暖期不同环数的PAHs和风速水平的关系各异,3环的PAHs浓度随风速水平增加而增加,4、5环的PAHs浓度变化不大,6、7环PAHs随风速水平的增加而浓度下降.  相似文献   

9.
广州市区PM_(2.5)的污染特征   总被引:3,自引:0,他引:3  
陈瑜 《环境保护科学》2010,36(3):7-8,11
对广州市区PM2.5的污染状况进行了分析,结果表明广州市区的PM2.5呈现冬季浓度较高,夏季较低的季节性特征;PM2.5的日变化呈现出明显的双峰形;与PM10的相关性分析表明,PM2.5与PM10具有良好的线性关系。PM2.5/PM10的值约为0.59,表明广州市区空气中细颗粒物在PM10中的比重大于粗颗粒物,鉴于PM2.5的危害性及所占比例,应重视对其的监测。  相似文献   

10.
在滨海新区局部区域汉沽和大港采集了TSP和PM10样品,分析了不同颗粒物中多环芳烃的不同期别污染和分布特征,结果表明,多环芳烃的污染水平存在明显的季节性特征,采暖期多环芳烃和可吸入颗粒物中苯并[a]芘浓度均远远高于非采暖期。多环芳烃在不同期别也有不同的分布特征,非采暖期均是高环类多环芳烃占主导地位,比例超过60%;而在采暖期则是中环类多环芳烃占主导。  相似文献   

11.
针对2017~2018年采暖季太原市PM2.5及其水溶性离子、碳质组分和无机元素开展在线观测,结合气象数据分析不同污染水平下的组分特征.分析表明,2017~2018年太原市采暖季细颗粒物主要化学成分为SO42-、NO3-、NH4+、Cl-、Ca2+、OC、EC,且呈现OC>SO42- > NO3- > NH4+ > Cl- > Ca2+ > EC的趋势,随污染水平增长最多的是二次无机物;优良、轻度污染和重污染3种污染水平下OC、EC相关系数分别为0.69、0.66、0.55,N/S分别为1.06、1.29、0.93,表明随着污染水平的提高,OC和EC的来源一致性逐步变差,且排放源虽仍处于氮排放源(移动源和工业源)和硫排放源(燃煤源)的共同控制,但硫排放源贡献率显著升高.重污染事件分析表明太原市重污染应对过程中不仅需要加强机动车、工业源等污染源的管控,更需要重点加强燃煤管控.  相似文献   

12.
利用大气主动采样技术对宁东能源化工基地大气PM_(2.5)中硝基多环芳烃(NPAHs)的污染特征、一次排放和二次形成源贡献及呼吸暴露风险进行了观测研究.结果表明,宁东能源化工基地大气PM_(2.5)中Σ _(12)NPAHs质量浓度在2. 06~37. 14ng·m~(-3)之间,其中基于能源产业的宝丰采样点冬、夏季采样期Σ _(12)NPAHs的平均质量浓度分别为(25. 57±5. 76) ng·m~(-3)和(6. 22±1. 74) ng·m~(-3).以化工、电力产业为主的英力特采样点冬、夏季Σ _(12)NPAHs平均质量浓度分别为(7. 13±1. 44)ng·m~(-3)和(2. 58±0. 39) ng·m~(-3),两采样点均表现出冬季高于夏季的季节特征,推测为冬季取暖造成较高的NPAHs一次排放所致.宝丰采样点Σ _(12)NPAHs浓度水平明显高于英力特,可能与宝丰的煤炭开采及焦炭生产的能源产业较化工产业造成更高的NPAHs一次排放相关,因而造成了Σ _(12)NPAHs浓度水平的空间差异.两个采样点PM_(2.5)中Σ _(12)NPAHs浓度的夜昼比表明,夏季Σ _(12)NPAHs浓度日间明显高于夜间而冬季则相反,表明夏季日间较夜间存在更活跃的大气光化学反应,较夜间贡献更多二次形成的NPAHs. NPAHs族谱特征的时空差异表现为:宝丰和英力特采样点冬夏季均以一次排放标识物2N-FLO和6N-CHR为主要占比,其中宝丰采样点冬季2N-FLO和6N-CHR总占比为46%,夏季为73%,英力特采样点冬季总占为59%,夏季为55%.但英力特采样点夏季二次形成的标识物3N-PHE浓度占比较宝丰更高,表明基于化工产业的英力特较宝丰存在更高的前体物排放,由此贡献更多二次形成的NPAHs.本研究还借助Σ _(12)NPAHs/Σ _(16)PAHs比值对NPAHs可能的来源贡献进行了分析研究,结果表明宁东能源化工基地夏季较高的温度促进了PAHs的降解以及NPAHs的二次形成,较冬季贡献更多二次形成源的NPAHs.基于BaP等效毒性因子评价法估算了PM_(2.5)中Σ _5NPAHs的呼吸暴露肺癌风险,结果表明,宝丰采样点PM_(2.5)中Σ _5NPAHs的肺癌风险值冬季为(3. 06×10~(-5)±1. 36×10~(-5)),夏季为(1. 79×10~(-5)±0. 80×10~(-5)),英力特采样点冬季为(2. 85×10~(-5)±1. 20×10~(-5)),夏季为(1. 86×10~(-5)±0. 83×10~(-5)).宝丰和英力特肺癌风险值均高于Cal/EPA规定的1. 00×10~(-5)的限值,表明宁东能源化工基地人群存在一定程度的大气PM_(2.5)中NPAHs呼吸暴露肺癌风险.  相似文献   

13.
本研究采集了长春市2017年秋季大气中的PM2.5样品共30个,采用气相色谱质谱仪(GC-MS)分析了样品中17种多环芳烃(polycyclic aromatic hydrocarbons,PAHs)的浓度和组成特征,运用比值法和主成分分析法确定PAHs的污染来源,并通过计算苯并(a)芘等效致癌浓度和终身致癌超额危险度进行健康风险评估.结果表明,长春市秋季PM2.5平均质量浓度为(50. 84±12. 23)μg·m-3,有机碳(OC)和元素碳(EC)含量分别为(17. 07±5. 64)μg·m-3和(1. 33±0. 75)μg·m-3,占PM2.5总量的37%; PAHs总浓度为(15. 69±5. 93) ng·m-3,以中高环数的PAHs为主,占总PAHs的84. 26%;长春市秋季大气中PAHs主要来源于机动车尾气排放(44. 48%)>煤燃烧(29. 16%)>生物质燃烧(26. 36%),本地交通(汽油车)...  相似文献   

14.
马可婧  孙丽娟 《环境科学》2023,44(11):5997-6006
为了明确兰州市PM2.5中16种多环芳烃(PAHs)的污染特征和来源,采集了兰州市4个季节的PM2.5样品,运用气相色谱-质谱联用仪(GC-MS)对PAHs的浓度进行了分析,利用正定矩因子分解法(PMF)、聚类分析和潜在源因子分析法(PSCF)对PAHs的来源进行解析.结果表明,兰州市PM2.5ρ(PAHs)均值为:冬季[(118±16.2) ng·m-3]>秋季[(50.8±21.6) ng·m-3]>春季[(22.2±8.87) ng·m-3]>夏季[(4.65±1.32) ng·m-3].相关性分析表明,兰州市PM2.5和TPAHs均与温度呈现极显著的负相关性,与气压呈现极显著的正相关性,与风向、风速和相对湿度的相关性较差.各环PAHs在4个季节的占比相似,其中4环和5环的PAHs占比为最大,其次为6环和2~3环.兰州市PM2.5中PAHs的主要来源在春夏季为工业排放和生物质及天然气燃烧,秋季工业排放占主导地位,冬季主要为燃煤排放,交通排放在4个季节的贡献比较稳定.聚类分析和PSCF计算结果表明,来自蒙古国、新疆东北部和青海等地的气流对兰州市环境空气质量有重要的影响.  相似文献   

15.
生物柴油对柴油机排放细颗粒物及其中多环芳烃的影响   总被引:1,自引:1,他引:1  
在柴油发动机台架上,考察普通柴油和2种原料不同的生物柴油(B100-1,大豆油为原料;B100-2,废油为原料)在2个固定转速不同负荷的4个工况点的细颗粒物PM2.5及其中多环芳烃(PAHs)的排放特性.用石英滤膜采集了尾气中的细颗粒物,并用GC/MS分析了颗粒物中的PAHs.生物柴油在高负荷时降低了柴油机PM2.5的排放速率,最大降幅达到了37.3%,在低负荷情况下增加了PM2.5排放速率.在所测试的工况下,生物柴油的颗粒相PAHs的排放速率较普通柴油均有不同程度的降低,最大降幅达到77.6%.生物柴油不但降低了PAHs的排放速率,还降低了PAHs在PM2.5中的质量百分比.B100-2的PM2.5和PAHs的平均排放速率比B100-1分别增加14.7%和17.8%.3种燃料排放PM2.5中的PAHs的主要化合物相似,均以小分子量为主,其中以菲的含量最高,2~3环PAHs超过总排放50%.生物柴油排放的PAHs毒性当量与柴油相比有较大程度地下降.  相似文献   

16.
为探究港口地区污染大气中多环芳烃(PAHs)的污染特征和潜在来源,以青岛港为研究对象,于2018年8月至2019年5月期间采集了4个季节的PM2.5样品(n=59),分析了PM2.5中PAHs的季节变化和组成特征,使用相关性分析探索了气象因素对PAHs浓度的影响,并采用正定矩阵因子分解和潜在来源贡献函数模型对潜在来源进行解析.结果表明,ρ(PAHs)平均值为(8.11±12.31) ng·m-3,秋冬季节高于春夏季节.PAHs的季节性分子组成相似,以4~5环PAHs (75.43%)为主.荧蒽、苯并[e]芘、苯并[a]蒽、菲、芘和䓛是研究区域PAHs的优势物种,这与船舶尾气中主要化合物组成相似.相关性分析表明,PAHs浓度与温度和相对湿度呈极显著负相关,与大气压和风向呈极显著正相关,与风速的相关性较差.PMF分析提取出6个贡献因子,结果表明,青岛港地区受航运排放(28.83%)影响最大,其次是机动车排放(20.49%)以及原油挥发(13.47%)等,夏季受航运排放影响最大.PSCF结果表明,京津冀、环渤海和鲁北地区是远距离传输的主要来源区域.  相似文献   

17.
深圳市大气细粒子(PM_(2.5))中汞的污染特征   总被引:2,自引:1,他引:2  
于2008年8月─2009年1月系统地采集了深圳市学院区和工业区的大气PM2.5样品,应用冷原子荧光法分析颗粒态总汞的含量〔以(ρ(汞)计〕.结果表明:深圳市大气PM2.5中ρ(汞)为1.93~249.27 pg/m3,平均值为72.11 pg/m3,与国内外同类研究的结果相比,其处于中等污染水平.PM2.5中ρ(汞)存在较大的季节和功能区差异,且季节差异更为显著,冬季污染最重,夏季次之,秋季最轻.夏季PM2.5中汞污染水平较高的原因:①受局地燃煤电厂排放量增加的影响;②由于台风外围下沉气流导致污染物在局地累积.从功能区差异来看,受局地燃煤电厂排放的影响,工业区PM2.5中汞的污染水平显著高于学院区.但在秋季,由于受集中的生物质燃烧排放的影响,学院区PM2.5中ρ(汞)约为工业区的1.51倍.此外,利用TEOM同步测定了学院区PM2.5中的w(汞),范围为0.19~3.43μg/g,平均值为1.11μg/g,冬季明显高于夏、秋季.PM2.5中w(汞)和温度呈显著负相关,说明温度是影响颗粒态汞的重要因素.  相似文献   

18.
太原市大气PM_(2.5)中铅同位素特征研究   总被引:1,自引:1,他引:1  
使用ICP-MS测定太原市2009年夏季至2010年春季典型月份中存在于PM2.5上的铅(Pb)及同位素特征,分析了铅的浓度水平、季节变化特征,探讨了铅同位素丰度比特征,并由富集因子法初步解析了铅的来源。结果显示,太原市环境大气中存在于PM2.5上的Pb含量为270.83ng/m3,低于我国环境空气质量标准(GB3095-2012)中对颗粒物中铅的年均限值,在国内属中等水平。冬季存在于PM2.5中的Pb浓度水平最高,与取暖燃煤排放有关;扬尘中的Pb富集则对春季的Pb污染有较大贡献。Pb与PM2.5的相关性显示夏季和冬季二者来源一致,皆为燃煤排放;206 Pb/207 Pb与208 Pb/206 Pb的同位素丰度比特征也表明PM2.5中Pb的主要源于燃煤排放,由于冬季煤炭消费量较高,其燃烧排放对PM2.5中Pb的贡献高于其他季节。采样期间PM2.5中Pb的富集因子(20.45)显示,Pb主要源于人为活动的排放;春季的富集因子(10.76)接近10,表明春季时自然源的Pb对PM2.5的贡献较大。  相似文献   

19.
为了解南昌市道路扬尘和土壤风沙尘PM2.5中多环芳烃(PAHs)的来源和健康风险,利用颗粒物再悬浮系统采集PM2.5样品,测定了PM2.5中16种优先控制的多环芳烃的含量.结果表明,南昌市道路扬尘PM2.5中ΣPAHs含量范围为48.85~166.16μg·kg-1,平均值为(114.22±39.95)μg·kg-1,土壤风沙尘PM2.5中ΣPAHs含量范围为31.05~62.92μg·kg-1,平均值为(40.79±9.39)μg·kg-1.道路尘和土壤风沙尘PM2.5中的PAHs都是以4~5环组分为主.主成分分析/多元线性回归分析结果表明,南昌市道路扬尘PM2.5中PAHs的来源包括机动车的排放和燃煤源与石油泄漏,贡献率分别为51.7%和48.3%,总估计值与实际值的线性拟合有很好的一致性.对于儿童和成年男性,不同暴露途径的PAHs致癌风险值从大到小依次是皮肤接触 > 摄食 > 呼吸吸入,而成年女性则表现为摄食 > 皮肤接触 > 呼吸吸入.各暴露途径中,PAHs对成人的致癌风险均高于儿童.所有人群中,PAHs的总致癌风险值均低于美国EPA推荐的致癌风险阈值10-6,没有致癌风险.  相似文献   

20.
太原市某城区四季大气PM2.5中重金属污染特征分析   总被引:1,自引:1,他引:0  
为了研究太原市大气PM_(2.5)中重金属污染的季节变化特征,于2012年12月至2013年9月4个季度典型时段在太原市迎泽区采集环境大气PM_(2.5)样品,采用连续提取法和电热板消解法分析了样品中5种重金属元素的化学形态和总浓度,并对重金属的生物有效性进行了评价.结果表明,1太原市迎泽区大气中PM_(2.5)日均质量浓度高达122.08~211.81μg·m~(-3),其四季日均浓度呈现为:冬季春季夏季秋季.2大气PM_(2.5)中重金属浓度在4个季节呈现一定的季节变化,其中Cu和Ni的季节变化不明显,Cr在夏、秋季浓度较高,Pb、Cd的浓度在冬季最高.3PM_(2.5)中不同重金属化学形态分布不同,除Cu外,其他4种重金属在不同季节的各化学形态含量基本相同,超过75%的Pb和Cd的分布在可溶态与可交换态、碳酸盐态、可氧化态与可还原态;Ni和Cr主要以有机质、氧化物与硫化物结合态和残渣态为主;Cu在春、夏、秋季主要分布在有机质、氧化物与硫化物结合态和残渣态两种形态中,在冬季主要在可氧化态与可还原态和有机质、氧化物与硫化物结合态两种形态中.4PM_(2.5)中5种重金属的生物有效性大小顺序为CdPbCuNiCr;Cd和Pb为生物可利用性元素,Cu、Ni和Cr为潜在生物可利用性元素.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号