首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
The objective of this study was to increase the efficiency of fall-applied N either by placement in bands or by using a slow-release fertilizer. Four field experiments were conducted in north-central Alberta to determine the influence of N source, time of application and method of placement on the recovery of fall-applied N as soil mineral N in May, and on yield and recovery of N in grain of spring-sown barley. The recovery in soil of mineral N by May from the fall-applied fertilizers varied among treatments. More specifically, the recovery was lowest with topdressed application, highest with banding, and tended to be less with incorporation application as compared to banding. Recovery of mineral N was least for sulphur-coated urea (SCU) compared with A.N. and urea, regardless of method of application. The loss of fall-applied N was substantial, but leaching did not go beyond 60 cm deep.Yield and recovery of N in barley grain were much greater with spring application than with fall application at the 4 sites for ammonium nitrate (A.N.) and at 3 sites for urea. The SCU treatments were inferior. The A.N. and urea had greatest yield and N recovery with banding, followed by incorporation and then with topdressing for both fall- and spring-applied N. Method of application had little effect on yield and N uptake with SCU. In all, the greatest yield or crop N uptake was obtained with spring banding of A.N. or urea, while SCU did not function well as a fall- or spring-applied N fertilizer.(Contribution No. 680)  相似文献   

2.
Field experiments were conducted in north-central and central Alberta to determine the effect of pellet size and depth of placement on yield and N uptake of barley from fall- and spring-applied urea. The application rate was 56 kg N ha–1. Fall incorporated commercial urea (0.01 g) gave 792 kg ha–1 lower yield and 15 kg ha–1 less N uptake than similarly applied commercial urea in spring on the average for the five experiments. The effectiveness of fall-applied N tended to be greater with large urea pellets (2.5 g), especially when they were placed 15 cm deep. Specifically, the relative yield efficiency of fallversus spring-applied N was 77% when the larger pellets were placed 4 cm deep and 95% when placed 15 cm deep. However, large pellets were less effective than commercial urea when both were applied in spring at sowing or two weeks before.  相似文献   

3.
In North America where the climate is cool enough only one crop is grown yearly, N fertilizers are sometimes applied in the previous fall rather than in the spring for fall- or spring-sown cereal grains. However, in areas where snow accumulates in winter, fall application of N fertilizers is generally inferior to spring application. Substantial nitrification takes place in winter and subsequent N loss occurs primarily in early spring by denitrification after the snow melt. Immobilization of N is also greater with fall- than spring-applied N fertilizers. Nitrogen is more efficiently retained in the soil as NH4 and thus more effectively used by plants if formation of nitrite (NO2) and NO3 is reduced or prevented by inhibiting nitrification. The nitrification is reduced when urea is placed in bands, because of high pH, ammonia concentration and osmotic pressure in the soil. The rate of nitrification is further reduced when urea is placed in widely-spaced nests (a number of urea prills placed together at a point below the soil surface) or as large urea granules (LUG) by reducing contact between the nitrifying bacteria and the NH4 released upon urea hydrolysis. A further reduction in nitrification from LUG can be obtained by addition of chemical nitrification inhibitors (such as dicyandiamide (DCD)) to LUG. The concentration of a chemical inhibitor required to suppress nitrification decreases with increasing granule size. The small soil-fertilizer interaction zone with placement of urea in nests or as LUG also reduces immobilization of fertilizer N, especially in soils amended with crop residues. The efficiency of fall-applied N is improved greatly by placing urea in nests or as LUG for small cereal grains. Yields of spring-sown barley from nests of urea or LUG applied in the fall are close to those obtained with spring-applied urea prills incorporated into the soil. Delaying urea application until close to freeze-up is also improved the efficiency of fall-applied N. This increased effectiveness of urea nests or LUG is due to slower nitrification, lower N loss over the winter by denitrification, and reduced immobilization of applied N. Fall application of LUG containing low rates of DCD slows nitrification, reduces over-winter N loss, and causes further improvement in yield and N uptake of winter wheat compared to urea as LUG alone in experiments in Ontario; in other experiments in Alberta there is no yield advantage from using a nitrification inhibitor with LUG for barley. Placement of LUG or nests of urea in soil is an agronomically sound practice for reducing N losses. This practice can eliminate or reduce the amount of nitrification inhibitor necessary to improve the efficiency of fall-applied urea where losses of mineral N are a problem. The optimum size of urea nest or LUG, and optimum combination of LUG and an efficient nitrification inhibitor need to be determined for different crops under different agroclimatic conditions. The soil (texture, CEC, N status), plant (winter or spring crop, crop geometry, crop growth duration and cultivar) and climatic (temperature, amount and distribution of precipitation) factors should be taken into account during field evaluation of LUG. There is a need to conduct region-specific basic research to understand mechanisms and magnitudes of N transformations and N losses in a given ecosystem. Prediction of nitrification from LUG or urea nests in various environments is needed. In nitrification inhibition studies with LUG and chemical nitrification inhibitors, measurements of nitrifier activity will be useful. Finally, there is need for development of applicators for mechanical placement of LUG or urea prills in widely-spaced nests in soil.  相似文献   

4.
The availability of N fertilizer to the crops under zero tillage versus conventional tillage may be affected by position of applied N, N immobilization and N loss from soil. The objectives of this study was to determine the influence of tillage, time of application and method of placement on the recovery of15N-labelled urea in barley (Hordeum vulgare L.) plants and in soil. Field experiments were conducted during 1984–85 at two locations (Rimbey and Ellerslie) in north-central Alberta. The lowest N recovery in barley plants occurred with surface broadcasting on zero tillage or with incorporation on conventional tillage. Placing urea in bands (23 or 46 cm lateral spacing) or nests (at poits 23 or 46 cm apart) increased the plant N recovery substantially. The plant N recovery was markedly lower with fall application than spring-applied N. For spring broadcast application, the N recovery in the plant was lower under zero tillage than conventional tillage. The15N recovery in soil (immobilized N) at harvest was greater with broadcast compared to bands or nests, and immobilized N was much greater with fall rather than spring application. The ratios of recoveries of15N in plant:soil with banding or nesting tended to be higher on zero tillage compared to conventional tillage. In all, placing urea in bands or nests increased the recovery of applied N in plants and decreased the amount of immobilized N under both zero and conventional tillage. The plant N recovery was inferior with fall application, but less so with bands or nests on zero tillage.(Scientific Paper No. 647)  相似文献   

5.
Two field experiments were conducted on Mn-deficient soils to evaluate the efficiency of rates, methods and time of MnSO4.H2 O application for wheat. Manganese sulphate was broadcast and mixed in soils at the rate of 5 to 50kg Mn ha–1 before seeding and 10 to 40 kg Mn ha–1 as top dress at 28 days — just before first irrigation. Three sprays of 1% MnSO4·H2O unneutralised solutions were applied, the first at 26 days — 2 days before first irrigation and the others afterward at weekly intervals. Both the methods caused a significant and marked increase in grain yield. Three foliar sprays were as effective as soil applications of 20 to 40 Kg Mn ha–1 before seeding. The difference in grain yield resulting from soil applications of Mn before seeding and applications at the first irrigation was not significant. The DTPA-Mn status of 20 fields, selected on the basis of varying degree of Mn deficiency, was related to grain yield (r = 0.77**). Also grain yield of all the experiments had a significant correlation with Mn content of grain (r = 0.55** to 0.82**) and straw (r = 0.77** to 0.82**). The critical limits calculated by statistical method were 1.25, 2.18 and 3.5 mg Mn kg–1 soil for severe deficiency, deficiency and latent deficiency respectively for wheat.  相似文献   

6.
Green house studies of 20 soils, having a range in DTPA extractable Mn, were made to determine the critical deficiency level of Mn for predicting response of barley to Mn application. Soil Mn was significantly related with both Bray's per cent dry matter yeild (r = 0.70**) and Mn uptake (r = 0.65**). Soil application of 25 mg Mn kg–1 soil significantly increased yield. Both graphical and statistical models of Cate and Nelson indicated the critical level to be 2.05 mg kg–1 soil of DTPA extractable Mn. The critical Mn deficiency level in 45 day barley plants was 18.6 mg kg–1 dry matter. The predictability of soil and plant critical Mn level was 91 and 80 per cent respectively.  相似文献   

7.
Field experiments were conducted from 1988 to 1991 or 1992 at two sites (Lacombe-Black Chernozem and Eckville-Gray Luvisol) in central Alberta, Canada to determine the effect of rate (0 to 300 kg N ha–1), source [urea and ammonium nitrate (AN)] and time (early fall, late fall, early winter, early spring and late spring) of N application on dry matter yield (DMY), protein yield (PY), protein concentration (PC), N-use efficiency (NUE), % N recovery (% NR) and nitrate-N (NO3–N) concentration in meadow bromegrass (Bromus bibersteinii Roem and Shult. cv. Regar). The DMY, PY and PC increased with increasing applied N, but the NUE and % NR decreased at high N rates. The increases in PY from fertilizer N were proportionately greater than DMY due to increase in PC at high N rates. Potentially toxic NO3–N levels (>2.3 g kg–1) were not found in the forage. Urea generally produced lower DMY, PY, PC, NUE and % NR than AN, regardless of time of application and cut. Early spring application had the highest and early winter application had the lowest DMY and PY. In conclusion, urea was less effective than AN as a forage fertilizer and early spring application was most effective.  相似文献   

8.
Greenhouse studies of 14 soils, having a range in DTPA extractable Mn, were made to determine the critical deficiency level of Mn in ustochrepts for predicting response of green gram to Mn application. Soil Mn was significantly related with Bray's per cent dry matter yield (r = 0.68**). Soil application of 20 mg Mn kg–1 soil significantly increased the yield. Both graphical and statistical models of Cate and Nelson indicated the critical level to be 2.9 mg kg–1 soil of DTPA extractable Mn. The critical deficiency level in youngest matured terminal leaf (YML) of 40 day green gram plants was 19.0µg g–1. The predictability of soil and plant critical Mn level was 93 per cent.  相似文献   

9.
A greenhouse study with 15 soils, having a range in DTPA extractable Mn, was conducted to determine the critical deficiency level of Mn in Ustochrepts for predicting response of soybean to Mn application. Soil application of 10 mg Mn kg–1 soil significantly increased the dry matter yield in deficient soils. Soil Mn was significantly related with Bray's per cent yield (r = 0.72**) and Mn uptake (r = 0.75**). Both graphical and statistical models of Cate and Nelson indicated the critical level to be 3.3 mg kg–1 soil of DTPA extractable Mn. Critical Mn deficiency level in recently matured terminal leaflet blade at V6 growth stage in soybean plant was 22.0µg g–1 dry matter. The predictability of soil and plant critical Mn level was 87 per cent.  相似文献   

10.
The recovery of15N labelled ammonium fertilizer was studied during two cropping sequences: sugar beet—spring wheat and winter rye—sugar beet with the labelled N applied to the first crop of each sequence. The difference between fall and spring application was also investigated. For the first cropping sequence 100 kg N ha–1 labelled with 11.4%15N atom excess (a.e.) was applied to the sugar beets. This labelled N was followed in the sugar beets, in the soil profile at harvesting time as well as in the spring wheat of the following year. The first crop of sugar beet recovered 43–46% of the applied N, with 26–29% remaining in the soil at harvesting time and 25–31% could not be accounted for. Of the residual N, less than 1% could be recovered by the next crop of spring wheat. For the second cropping sequence 50 kg N ha–1 labelled with 11.5%15N a.e. was applied to the winter rye and followed in the winter rye and in the sugar beets of the following year. The recovery of the labelled fertilizer N applied to the winter rye of the second sequence was 20–27% and the sugar beets of the next year could only recover 2%. With respect to time of application, no difference in fertilizer N recovery was found between fall or spring application for the two sequences.  相似文献   

11.
Double-labelled15N ammonium nitrate was used to determine the uptake of fertilizer and soil N by ryegrass swards during spring and mid-season. The effects of water stress (40% of mean rainfall v 25 mm irrigation per 25 mm soil water deficit) and the rate of application of N in the spring (40 v 130 kg ha–1) on the recovery of 130 kg N ha–1 applied in mid-season were also evaluated. Apparent recovery of fertilizer N (uptake of N in the fertilized plot minus that in the control expressed as a percentage of the N applied) was 95 and 79% for fertilizer N applied in the spring at rates of 40 and 130 kg ha–1, respectively. Actual recovery of the fertilizer N assessed from the uptake of15N was only 31 and 48%, respectively. The uptake of soil N by the fertilized swards was substantially greater than that by the control. However, the increased uptake of soil N was always less than the amount of fertilizer N retained in or lost from the soil. Broadly similar patterns for the uptake of fertilizer and soil N were observed during mid-season. Uptake of N in mid-season was highest for swards which received 40 kg N ha–1 in the spring and suffered minimal water stress during this period. Application of 130 kg N ha–1 in spring reduced the uptake of N in mid-season to an extent similar to that arising from water stress. Only 1.8 to 4.2 kg ha–1 (3 to 10%) of the N residual from fertilizer applied in the spring was recovered during mid-season. Laboratory incubation studies suggested that only a small part of the increased uptake of soil N by fertilized swards could be attributed to increased mineralisation of soil N induced by addition of fertilizer. It is considered that the increased uptake of soil N is partly real but mostly apparent, the latter arising from microbially mediated exchange of inorganic15N in the soil.  相似文献   

12.
Field experiments were conducted during 1988–1989 at two adjacent sites on an acid sulfate soil (Sulfic Tropaquept) in Thailand to determine the influence of urea fertilization practices on lowland rice yield and N use efficiency. Almost all the unhydrolyzed urea completely disappeared from the floodwater within 8 to 10 d following urea application. A maximum partial pressure of ammonia (pNH3) value of 0.14 Pa and an elevation in floodwater pH to about 7.5 following urea application suggest that appreciable loss of NH3 could occur from this soil if wind speeds were favorable. Grain yields and N uptake were significantly increased with applied N over the control and affected by urea fertilization practices (4.7–5.7 Mg ha–1 in dry season and 3.0–4.1 Mg ha–1 in wet season). In terms of both grain yield and N uptake, incorporation treatments of urea as well as urea broadcasting onto drained soil followed by flooding 2 d later were more effective than the treatments in which the same fertilizer was broadcast directly into the floodwater either shortly or 10 d after transplanting (DT). The15N balance studies conducted in the wet season showed that N losses could be reduced to 31% of applied N by broadcasting of urea onto drained soil and flooding 2 d later compared with 52% loss by broadcasting of urea into floodwater at 10 DT. Gaseous N loss via NH3 volatilization was probably responsible for the poor efficiency of broadcast urea in this study.  相似文献   

13.
Annual application of NPK fertilizers over a 18 year period to coconut on red sandy loam soils resulted in a minimal increase in mineralisable N, but in a marked increase in available P and K. Plant N levels, however, reflected the improved N nutrition but did not reach sufficiency levels found elsewhere. An available P status of 15 ppm in the control plots kept leaf P at sufficiency levels. P fertilizers did not increase the P content of leaves. K fertilizers raised the K leaf content to sufficiency levels. Doubling the M1 fertilizer rates of 500 g N, 220 g P and 830 g K per palm per year had no effect on N, P and K levels in the palm leaves.Changes in K levels of the leaves had antagonistic effects on leaf Mg (r = – 0.68**) and leaf Na (r = – 0.87**). As this effect brings leaf Mg close to deficiency values palms receiving K might need additional Mg as well.The findings and interpretation of soil and leaf analysis data were confirmed by large yield responses to application of NPK fertilizers. Genetic differences between palms in their response to levels of nutrient supplies were apparent. The CDO × WCT hybrid outyielded the high yielding WCT variety especially when NPK was given at the M1 level. The response in yield to applied fertilizers was linear for WCT and curvilinear for the hybrids CDO × WCT and WCT × CDO.  相似文献   

14.
The influence of N fertilizer rate on uptake and distribution of N in the plant,15N labelled fertilizer uptake and sugar yield were studied for 3 years on autumn sown sugar beet (Beta vulgaris L.) under Mediterranean (Southern Spain) rain-fed and irrigated conditions. Available average soil N prior to sowing was 69 kg N ha–1, and net mineralisation in the soil during the growth period was 130 kg N ha–1. Maximum N uptake occurred in the spring and increased with increasing fertilizer rates in the irrigated crop. There was no increase in N uptake in the sugar beet cropped under rain-fed conditions because of water shortage. Maximum average N uptake both by roots and tops was between 200 and 250 kg N ha–1. When N fertilizer was not applied, average uptake from the soil was between 130 and 140 kg N ha–1. At the end of the growth period there was a marked translocation of N from the leaves to the root which increased with the N fertilizer rate. The N ratio top/roots at harvest was 0.45–0.5 and 0.8- - 1 in the irrigated and rain-fed sugar beet, respectively. Maximum15N labelled fertilizer uptake took place in May-June, being larger in irrigated sugar beet or when spring rainfall was more abundant. Fertilizer use efficiency varied between 30% and 68%. Sugar yield response to N fertilizer rates depended on the N available in the soil and on the total water input to the crop, particularly in spring. The response was more constant in the irrigated crop, where optimum yield was obtained with a fertilizer rate of 160 kg N ha–1. In the rain-fed crop, the optimum dose proved more erratic, with an estimated mean of 100 kg N ha–1. The amount of N required to produce 1 t of root and of sugar ranged between 1.5 and 3.8 kg N and between 11.1 and 22.4 kg N respectively, and varied according to the N fertilizer rates applied.  相似文献   

15.
Incubation experiments were conducted to determine the relationship between N mineralization potential of soils and yield or N uptake of barley grain. In addition, the effect of soil type and soil depth on N mineralization potential was investigated. In an experiment with 39 cultivated surface soil samples varying in organic C from 1.5 to 8.6%, the amount of mineralized N (as determined by the incubation method of Stanford and Smith, 1972) ranged from 34 to 111 mg N kg?1 over a 12-week period but the correlation coefficient between mineralized N and soil organic C was only 0.49**. Mineralized N was not correlated with grain yield or N uptake (r = 0.29 or 0.32, respectively), but there was a fairly close correlation between soil NO3-N at sowing and yield (r = 0.79**) or N uptake of barley grain (r = 0.82**). Combining soil NO3-N at sowing and mineralized N on incubation did not improve correlation. In the other experiment with just two soils, the mineralized N sharply decreased with increasing soil depth.  相似文献   

16.
In a greenhouse experiment the response of chickpea (Cicer arietinum) to zinc fertilization was examined using 27 soils from the semi-arid tropics. The critical level of DTPA extractable soil Zn was evaluated. Zinc additions to the soil increased the dry matter yield of six weeks old plant shoot, grain and straw significantly at the 5 mg kg–1 level, but tended to decrease it at the 10 mg kg–1 level.The DTPA extractable Zn of the soils ranged from 0.28 to 1.75 ppm and was negatively correlated at 1 per cent level with pH (r = – 0.81) and positively with organic carbon (r = 0.79) and Olsen's P (r = 0.63). The per cent yield increase or decrease over zero zinc ranged from 67 to – 16 in respect of grain yield and was positively correlated with available Zn (r = 0.86**). Zinc concentration in plants was greatly increased with the application of Zn and accumulation of Zn was higher in grain than straw. The critical level of available zinc in soil below which plant response to Zn fertilization may be expected was 0.48 mg Zn kg–1 soil. Soils between 0.48 to 0.70 mg kg–1 of DTPA extractable Zn appear boarderline and a negative response to applied Zn was observed in soils of high Zn category. The results show the suitability of DTPA soil test for demarcating soils on the basis of plant response to zinc fertilization.  相似文献   

17.
The performance of three different models, which simulate changes in the inorganic N content of the soil, was evaluated in respect of their ability to predict Nmin content in the spring under cereal crops. The models of British, Dutch and German origin, were tested using data from farmers' fields supplied by 70 farmers over two growing seasons in FRG. The models were run between harvest of the previous crop and spring of the following year, and predictions of Nmin in the spring compared to soil measurements. The performance of the models was assessed by counting the number of cases in which predictions agreed within 10 or 20 kg (N) ha–1 of the measurements. Predictions were less than ± 10 kg (N) ha–1 of measured values in only 30–44% and 28–55% of cases in 1988 and 1989, respectively. Predictions were less than ± 20 kg (N) ha–1 of measured values in 62–70% and 68–82% of cases in 1988 and 1989, respectively. Predictions in 1989 were better because the initial Nmin content in the autumn was included in the model input. None of the models tested had been designed to use input data of the type available to farmers. It is concluded that, at present, the results are too variable for any of the models to be used with confidence as tools to aid in N fertilizer recommendations.  相似文献   

18.
Four field experiments were conducted in central Alberta to determine influence of the N source, time and method of application and simulated rainfall on the recovery of15N-labelled fertilizers applied to meadow bromegrass (Bromus biebersteinii Roem and Shultz. cv. Regar) in plants (topgrowth plus roots) and in soil. The first experiment compared two N sources (urea and ammonium nitrate (A.N.)) and six times of application (early fall, late fall, early winter, early spring, late spring and spring-summer split) where N fertilizers were surface-broadcast. Urea gave lower N recovery than A.N., regardless of time of application (on the average by 16.4% in plants and by 18.3% in plants plus soil). For urea, early spring application gave higher N recovery than the other times of application, especially at the Eckville site. For A.N., spring applications gave higher N recovery than fall or early winter applications but N recovery was only slightly greater with early spring than late spring application. The second experiment evaluated methods of N placement (surface-broadcasting and banding). The N recovery in plants increased with subsurface band placement over surface-broadcast by 20.2% for fall application and by 15.5% for spring application. The other two experiments investigated the effect of amount (0, 5, 10, 20 and 40 mm) of simulated rainfall and interval (0, 1, 2, 4, 8, and 16 d) between surface urea application and simulated rainfall on N recovery. Simulated rainfall of 10 mm immediately after surface urea application on moist soil increased the N recovery in plants by 8.1–10.7% compared to no simulated rainfall. Delaying simulated rainfall (20 mm) by 4 d after surface urea application decreased the N recovery in plants by 8.7–15.2%. In conclusion, the N recovery improved greatly when urea was placed below the soil surface or with simulated rainfall immediately after surface urea application.  相似文献   

19.
The Effects of Cultural Practices on Methane Emission from Rice Fields   总被引:1,自引:0,他引:1  
A field experiment was conducted in a clayey soil to determine the effects of cultural practices on methane (CH4) emissions from rice fields. The factors evaluated were a) direct seeding on dry vs wet soil, b) age of transplanted seedlings (8 d old and 30 d old), and c) fall vs spring plowing. Methane emissions were measured weekly throughout the rice-growing season using a closed static chamber technique. Transplanted 8-d-old seedlings showed the highest emission of 42.4 g CH4 m–2 season–1, followed by transplanted 30-d-seedlings (40.3 g CH4 m–2 season–1), and direct seeding on wet soil (37.1 g CH4 m–2 season–1). Direct seeding on dry soil registered the least emission of 26.9 g CH4 m–2 season–1. Thus transplanting 30-d-old seedlings, direct seeding on wet soil, and direct seeding on dry soil reduced CH4 emission by 5%, 13%, and 37%, respectively, when compared with transplanting 8-d-old seedlings. Methane emission under spring plowing was 42.0 g CH4 m–2 season–1 and that under fall plowing was 31.3 g CH4 m–2 seasons–1. The 26% lower emission in the field plowed in spring was caused by degradation of organic matter over the winter.  相似文献   

20.
Management of nitrogen by fertigation of potato in Lebanon   总被引:2,自引:0,他引:2  
Reports on soil and groundwater contamination with nitrates in Lebanon and other developing countries could be related to the mismanagement of water and fertilizer inputs. The objective of this work was to determine the N requirements and N-use efficiency of a main-crop potato in Lebanon, irrigated by a drip system, compared to the farmer's practice of macro-sprinkler. In the drip irrigation, fertilizers input was as soil application at the time of sowing or added continuously with the irrigation water (fertigation). Nitrogen-fertilizer recovery was determined using 15N-labeled ammonium sulfate. Fertigation with continuous N feeding based on actual N demands and available sources allowed for 55% N recovery. For a total N uptake of 197 kg ha–1 per season in the lower N rate, the crop removed 66 kg N ha–1 from fertilizers. The spring potato crop in this treatment covered 44.8% of its N need from the soil and 21.8% from irrigation water. Higher N input increased not only N derived from fertilizers, but also residual soil N. Buildup of N in the soil with the traditional potato fertilization practice reached 200 kg N ha–1 per season. With increasing indications of deteriorating groundwater quality, we monitored the nitrate leaching in these two watering regimes using soil solution extractors (tensionics). Nitrate leaching increased significantly with the macro-sprinkler technique. But N remained within the root zone with the drip irrigation. The crop response to applied N requires a revision of the current fertilizer recommendation in semi-arid regions, with an improved management of fertilizer and water inputs using fertigation to enhance N recovery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号