首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 699 毫秒
1.
In axial annular flow, the shear stress decreases from its value τ(κR) at the inner cylinder to 0 at r = λR and increases from then on to τ(R) at the outer cylinder. For plastic fluids with a yield stress τ c, λ will be such that flow commences when τ(κR) = τ(R) = τ c. For fluids with position-dependent yield stresses (electro- and magnetorheological fluids are examples), the situation is more complex. While it is possible that yielding and flow occur everywhere, it is also possible that flow occurs only in parts of the fluid-filled space, and a dead zone (region in which the fluid is at rest) close to one of the walls exists. In that case, the fluid will flow no matter how small the applied pressure difference is. If P is large enough, the dead zone ceases to exist and flow without any plug is possible. The fluid flows as if no yield stress exists.
Basim Abu-JdayilEmail:
  相似文献   

2.
Peristaltic flow of Herschel-Bulkley fluid in an inclined tube is analyzed. The velocity distribution, the stream function and the volume flow rate are obtained. Also, when the yield stress ratio τ→0, and when the inclination parameter α=0 and the fluid parameter n=1, the results agree with those of Jaffrin and Shapiro (Ann. Rev. Fluid Mech. 3 (1971) 13) for peristaltic transport of a Newtonian fluid in a horizontal tube. The effects of τ and n on the pressure drop and the mean flow are discussed through graphs. Furthermore, the results for the peristaltic transport of Bingham and power law fluids through a flexible tube are obtained and discussed. The results obtained for the flow characteristics reveal many interesting behaviors that warrant further study of the effects of Herschel-Bulkley fluid on the flow characteristics.  相似文献   

3.
We consider the stability of a multi-layer plane Poiseuille flow of two Bingham fluids. It is shown that this two-fluid flow is frequently more stable than the equivalent flow of either fluid alone. This phenomenon of super-stability results only when the yield stress of the fluid next to the channel wall is larger than that of the fluid in the centre of the channel, which need not have a yield stress. Our result is in direct contrast to the stability of analogous flows of purely viscous generalised Newtonian fluids, for which short wavelength interfacial instabilities can be found at relatively low Reynolds numbers. The results imply the existence of parameter regimes where visco-plastic lubrication is possible, permitting transport of an inelastic generalised Newtonian fluid in the centre of a channel, lubricated at the walls by a visco-plastic fluid, travelling in a stable laminar flow at higher flow rates than would be possible for the single fluid alone.  相似文献   

4.
Various structured fluids were placed between the parallel circular plates of a squeeze-flow rheometer and squeezed by a force F until the fluid thickness h was stationary. Fluid thickness down to a few microns could be measured. Most fluids showed two kinds of dependence of f on h according to an experimentally-determined thickness h *. If h > h * then F varied in proportion to h −1 as predicted by Scott (1931) for a fluid with a shear yield stress τ0. The magnitude of τ0 from squeeze-flow data in this region was compared with the yield stress measured by the vane method. For some fluids τ0 measured by squeeze flow was less than the vane yield stress, suggesting that the yield stress of fluid in contact with the plates was less than the bulk yield stress. If h < h * then F varied approximately as h −5/2 and the squeeze-flow data in this region analysed with Scott's relationship gave a yield stress which increased as the fluid thickness decreased. This previously unreported effect may result from unconnected regions of large yield stress in the fluid of size similar to h * which are not sensed by the vane and which become effective in squeeze flow only when h < h *. Received: 13 December 1999/Accepted: 4 January 2000  相似文献   

5.
The steady, pressure-driven flow of a Herschel-Bulkley fluid in a microchannel is considered, assuming that different power-law slip equations apply at the two walls due to slip heterogeneities, allowing the velocity profile to be asymmetric. Three different flow regimes are observed as the pressure gradient is increased. Below a first critical pressure gradient G 1, the fluid moves unyielded with a uniform velocity, and thus, the two slip velocities are equal. In an intermediate regime between G 1 and a second critical pressure gradient G 2, the fluid yields in a zone near the weak-slip wall and flows with uniform velocity near the stronger-slip wall. Beyond this regime, the fluid yields near both walls and the velocity are uniform only in the central unyielded core. It is demonstrated that the central unyielded region tends towards the midplane only if the power-law exponent is less than unity; otherwise, this region rends towards the weak-slip wall and asymmetry is enhanced. The extension of the different flow regimes depends on the channel gap; in particular, the intermediate asymmetric flow regime dominates when the gap becomes smaller than a characteristic length which incorporates the wall slip coefficients and the fluid properties. The theoretical results compare well with available experimental data on soft glassy suspensions. These results open new routes in manipulating the flow of viscoplastic materials in applications where the flow behavior depends not only on the bulk rheology of the material but also on the wall properties.  相似文献   

6.
Vane viscometers are often used to investigate the low shear rate properties of plastic fluids. The shear stress is determined by assuming that the material is held in the space between the vane blades so that it behaves like a rigid cylinder. Experimental evidence supports this assumption and the aim of the present study is to model numerically the yield process in a vane rheometer using viscoelastic and plastic fluids. The finite element method has been used to model the behavior of Herschel-Bulkley (Bingham), Casson and viscoelastic (Maxwell type) fluids. The penalty function approach for the pressure approximation and a rotating reference frame are used together with fine meshes containing more than 1300 elements. The results show that for Herschel-Bulkley (Bingham), and Casson fluids a rotating rigid cylinder of fluid is trapped inside the periphery of the vane, the shear stress is uniformly distributed over the surface of the cylinder. Finally a modified second order fluid is used to simulate the viscoelastic behaviour, anticipated to be an intermediate between the elastic deformation and the plastic flow, to provide a more realistic simulation of the yield process about a vane. In this case, contrast with the concentration of the elastic strain rate at the blade tips, a nearly uniform distribution of the plastic shear rate is still found. This implies that the plastic shear always distributes uniformly during the entire yielding process. Evidently the assumption of uniform shear on a rotating cylinder of material occluded in the blades of a vane is a valid and useful model for many types of fluid possessing a yield stress.  相似文献   

7.
In this paper, the squeeze flow between two rigid spheres with a bi-viscosity fluid is examined. Based on lubrication theory, the squeeze force is calculated by deriving the pressure and velocity expressions. The results of the normal squeeze force are discussed, and fitting functions of the squeeze and correction coefficients are given. The squeeze force between the rigid spheres increases linearly or logarithmically with the velocity when most or part of the boundary fluid reaches the yield state, respectively. Furthermore, the slip correction coefficient decreases with the increase in the velocity. The investigation may contribute to the further study of bi-viscosity fluids between rigid spheres with wall slip.  相似文献   

8.
The immiscible displacement in a capillary plane channel of a Newtonian liquid by a viscoplastic one that obeys a Papanastasiou’s constitutive equation is numerically analyzed. An elliptic mesh generation technique, coupled with the Galerkin finite element method is used to determine the velocity field and the configuration of the interface between the two materials. We investigate the displacement efficiency and the flow patterns of the problem as functions of the dimensionless parameters that govern the problem: the capillary number (Ca), the viscosity ratio of the two fluids (N η ) and the yield number, (τ0). The numerical results showed that for a fixed viscosity ratio, the fraction of mass attached to the wall is a decreasing function of τ0. We constructed maps of streamlines in the Cartesian space defined by τ0 and Ca for fixed viscosity ratios in order to capture the rough location of bypass and recirculating flow regimes. Higher yield number values induce bypass flow regimes, especially for high Ca. The dimensionless forms of the momentum conservation equation and the force balance at the interface were essential for the understanding of the role played by the dimensionless numbers that govern the problem.  相似文献   

9.
The determination of the parameters of viscoplastic fluids subject to wall slip is a special challenge and accurate results are generally obtained only when a number of viscometers are utilized concomitantly. Here the characterization of the parameters of the Herschel-Bulkley fluid and its non-linear wall slip behavior is formulated as an inverse problem which utilizes the data emanating from capillary and squeeze flow rheometers. A finite element method of the squeeze flow problem is employed in conjunction with the analytical solution of the capillary data collected following Mooneys procedure, which uses dies with differing surface to volume ratios. The uniqueness of the solution is recognized as a major problem which limits the accuracy of the solution, suggesting that the search methodology should be carefully selected.  相似文献   

10.
When the flow behaviour of fluids is investigated with capillary-or rotational rheometers, adhesion of the fluid to the wall is normally one of the boundary conditions. For many fluids, especially for suspensions, this assumption is not valid. These fluids tend to slip at the wall. Therefore the normal evaluation of rheometer measurements leads to apparent but not compatible flow functions. The flow behaviour of these fluids can be characterized with two material functions which describe separately slipping in the boundary layer and shearing within the fluid. Only if both functions are known, correct predictions of flow processes are possible. A simple equipment to separate the shear function and the slip function is described.List of symbols Y* apparent shear rate - Y w * apparent wall shear rate - Yw wall shear rate corrected with Rabinowitsch and Weissenberg correction - Ys reduced shear rate (slip corrected) - Yws reduced wall shear rate (slip corrected) - * (r) velocity distribution in a capillary - G slip velocity (at the wall) - * (r) velocity distribution in a capillary (without slip) - shear stress - w wall shear stress - VS total volume rate - VG shear volume rate - VG slip volume rate - p 1 pressure in the reservoir channel of the capillary rheometer - p 0 athmospheric pressure - L capillary length - R capillary radius  相似文献   

11.
The effect of matrix elasticity on the break-up of an isolated Newtonian drop under step shear flow is herein presented. Constant-viscosity, elastic polymer solutions (Boger fluids) were used as matrix phase. Newtonian silicon oils were used as drop phase. Three viscosity ratios were explored (drop/matrix), i.e. 2, 0.6 and 0.04. Following the theoretical analysis of Greco [Greco F (2002) J Non-Newtonian Fluid Mech 107:111–131], the role of elasticity on drop fluid dynamics was quantified according to the value of the parameter p=/em, where is a constitutive relaxation time of the matrix fluid and em is the emulsion time. Different fluids were prepared in order to have p ranging from 0.1 to 10. At all the viscosity ratios explored, break-up was hindered by matrix elasticity. The start-up transient of drop deformation, at high, but sub-critical capillary numbers, showed an overshoot, during which the drop enhanced its orientation toward the flow direction. Both phenomena increase if the p parameter increases. Finally, the non-dimensional pinch-off length and break-up time were also found to increase with p.This paper was presented at the first Annual European Rheology Conference (AERC) held in Guimarães, Portugal, September 11-13, 2003.  相似文献   

12.
The velocity field and the adequate tangential stresses corresponding to the unsteady flow of an Oldroyd-B fluid induced by a constantly accelerating plate between two side walls perpendicular to the plate are established by means of Fourier sine transforms. The solutions corresponding to Maxwell, second grade and Newtonian fluids, performing the same motion, appear as limiting cases of the solutions obtained here. In the absence of the side walls, namely when the distance between walls tends to infinity, all solutions that have been determined reduce to those corresponding to the flow over an infinite plate. Finally, for comparison, the velocity field at the middle of the channel as well as the shear stress on the bottom wall is plotted as a function of y for several values of t and of the material constants. The influence of the side walls on the motion of the fluid is also emphasized by graphical illustrations.  相似文献   

13.
In this paper a constitutive equation for the extra stress tensor τ is considered, which can be used for steady axisymmetric flows when u ϕ=0 (non-swirling). It is explicit with coefficients which, in case of incompressibility, depend only upon three invariants. As such it should prove useful in numerical calculations, especially so if used in its simplest form, namely the quasi-Newtonian fluid. Here, a purely viscous code can be used. The constitutive equation is self-consistent and receives additional justification from the fact that any constitutive equation is bound to result in the form proposed if the flow is a constant stretch history flow. Received: 30 March 1998 Accepted: 6 August 1998  相似文献   

14.
In this paper, the pulsatile flow of blood through stenosed artery is studied. The effects of pulsatility, stenosis and non-Newtonian behavior of blood, assuming the blood to be represented by Herschel-Bulkley fluid, are simultaneously considered. A perturbation method is used to analyze the flow assuming the thickness of plug core region to be non-uniform changing with axial distance. An expression for the variation of plug core radius with time and axial distance is obtained. The variation of pressure gradient with steady flow rate is given. Also the variation of wall shear stress distribution as well as resistance to flow with axial distance for different values of time and for different values of yield stress is given and the results analyzed.  相似文献   

15.
In the present article, the rheological responses and dispersion stability of magnetorheological (MR) fluids were investigated experimentally. Suspensions of magnetite and carbonyl iron particles were prepared as model MR fluids. Under an external magnetic field (H 0) and a steady shear flow, the yield stress depends upon H 0 3/2. The Yield stress depended on the volume fraction of the particle (φ) linearly only at low concentration and increased faster at high fraction. Rheological behavior of MR fluids subjected to a small-strain oscillatory shear flow was investigated as a function of the strain amplitude, frequency, and the external magnetic field. In order to improve the stability of MR fluid, ferromagnetic Co-γ-Fe2O3 and CrO2 particles were added as the stabilizing and thickening agent in the carbonyl iron suspension. Such needle-like particles seem to play a role in the steric repulsion between the relatively large carbonyl iron particles, resulting in improved stability against rapid sedimentation of dense iron particles. Furthermore, the additive-containing MR suspensions exhibited larger yield stress, especially at higher magnetic field strength. Received: 4 April 2000 Accepted: 6 November 2000  相似文献   

16.
Newtonian fluid flow in two- and three-dimensional cavities with a moving wall has been studied extensively in a number of previous works. However, relatively a fewer number of studies have considered the motion of non-Newtonian fluids such as shear thinning and shear thickening power law fluids. In this paper, we have simulated the three-dimensional, non-Newtonian flow of a power law fluid in a cubic cavity driven by shear from the top wall. We have used an in-house developed fractional step code, implemented on a Graphics Processor Unit. Three Reynolds numbers have been studied with power law index set to 0.5, 1.0 and 1.5. The flow patterns, viscosity distributions and velocity profiles are presented for Reynolds numbers of 100, 400 and 1000. All three Reynolds numbers are found to yield steady state flows. Tabulated values of velocity are given for the nine cases studied, including the Newtonian cases.  相似文献   

17.
The pulsatile flow of a two-phase model for blood flow through axisymmetric and asymmetric stenosed narrow arteries is analyzed, treating blood as a two-phase model with the suspension of all the erythrocytes in the core region as the Herschel-Bulkley material and plasma in the peripheral layer as the Newtonian fluid. The perturbation method is applied to solve the resulting non-linear implicit system of partial differential equations. The expressions for various flow quantities are obtained. It is found that the pressure drop, plug core radius, wall shear stress increase as the yield stress or stenosis height increases. It is noted that the velocity increases, longitudinal impedance decreases as the amplitude increases. For asymmetric stenosis, the wall shear stress increases non-linearly with the increase of the axial distance. The estimates of the increase in longitudinal impedance to flow of the two-phase Herschel-Bulkley material are significantly lower than those of the single-phase Herschel-Bulkley material. The results show the advantages of two-phase flow over single-phase flow in small diameter arteries with stenosis.  相似文献   

18.
This article presents a numerical and experimental investigation of the thermal convection for a thermodependent Herschel-Bulkley fluid in an annular duct under the conditions of a uniform heat flux density on the outer wall and an insulated inner wall. In the numerical analysis, it is assumed that: (i) the rheological behavior of the fluid can be expressed through the Herschel-Bulkley law: $\tau = \tau _s + K\dot \gamma ^n $ ; (ii) the flow is fully developed at the inlet; (iii) all fluid properties except consistency indexK are constant. TheK?T relation used isK=K 0exp(?bT). The results obtained enable us to characterize completely the dynamical and thermal fields. The numerical solution is in good agreement with the experimental data, showing the reasonableness of the computed results.  相似文献   

19.
We study the flow of yield stress fluids over a rotating surface when both the viscoelastic solid behavior below a critical deformation (γ c) and liquid properties beyond γ c can play a significant role. We review the detailed characteristics of the flow in the solid regime in the specific case of a pure elongational strain (large height to radius ratio). We, in particular, show that there exists a critical rotation velocity (ω c) associated with the transition from the solid to the liquid regime. We then consider the specific case of lubricational regime (small height to radius ratio) in the liquid regime. In that case we describe the different possible evolutions of the equilibrium shape of the material as a function of the rotation velocity (ω), from which we extrapolate the transient shape evolutions as ω increases. We show that for a sufficiently large rotation velocity the sample separates into two parts, one remaining at rest around the rotation axis, the other going on moving radially. These predictions are then compared with systematic spin-coating tests under increasing rotation velocity ramps followed by a plateau at ω f with typical yield stress fluids. It appears that there exists a critical velocity below which the material undergoes a limited elongation and beyond which it starts to spread significantly over the solid surface. For a larger ω f value the sample forms a thick peripheral roll, leaving behind it a thin layer of fluid at rest relatively to the disc. These characteristics are in qualitative agreement with the theoretical predictions. Beyond a sufficiently large ω f value this roll eventually spreads radially in the form of thin fingers. Moreover, in agreement with the theory in the lubricational regime, the different curves of deformation vs ω fall along a master curve when the rotation velocity is scaled by ω c for different accelerations, different sample radii, or different material yield stress. The final thickness of the deposit seems to be mainly governed by the displacement of the roll, the characteristics of which take their origin in the initial stage of the spreading, including the solid–liquid transition.  相似文献   

20.
Exact series solutions for planar creeping flows of Oldroyd-B fluids in the neighbourhood of sharp corners are presented and discussed. Both reentrant and non-reentrant sectors are considered. For reentrant sectors it is shown that more than one type of series solution can exist formally, one type exhibiting Newtonian-like asymptotic behaviour at the corner, away from walls, and another type exhibiting the same kind of asymptotics as an Upper Convected Maxwell (UCM) fluid. The solutions which are Newtonian-like away from walls are shown to develop non-integrable stress singularities at the walls when the no-slip velocity boundary condition is imposed. These mathematical solutions are therefore inadmissible from the physical viewpoint under no-slip conditions. An inadmissible solution, with stress singularities which are not everywhere integrable, is identified among the solutions of UCM-type. For a 270° reentrant sector the radial behaviour of the normal stress is everywhere r−0.613. In the viscometric region near a wall, the radial normal stress σrr behaves like (rε)−0.613, where ε is the angle made with the wall. In addition σrθ is infinite (not integrable) at the wall even when r is non-zero. Another UCM-type solution has a normal stress behaviour away from walls which is r−0.985 for 270° sector. Again, this solution has a non-integrable stress singularity and is therefore inadmissible. Finally, for non-reentrant sectors it is shown that the flow is always Newtonian-like away from walls.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号