首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Xie M  Hu J  Wen CY  Zhang ZL  Xie HY  Pang DW 《Nanotechnology》2012,23(3):035602
Bead-based optical encoding or magnetic encoding techniques are promising in high-throughput multiplexed detection and separation of numerous species under complicated conditions. Therefore, a self-assembly strategy implemented in an organic solvent is put forward to fabricate fluorescent-magnetic dual-encoded nanospheres. Briefly, hydrophobic trioctylphosphine oxide-capped CdSe/ZnS quantum dots (QDs) and oleic acid-capped nano-γ-Fe2O3 magnetic particles are directly, selectively and controllably assembled on branched poly(ethylene imine)-coated nanospheres without any pretreatment, which is crucial to keep the high quantum yield of QDs and good dispersibility of γ-Fe2O3. Owing to the tunability of coating amounts of QDs and γ-Fe2O3 as well as controllable fluorescent emissions of deposited-QDs, dual-encoded nanospheres with different photoluminescent emissions and gradient magnetic susceptibility are constructed. Using this improved layer-by-layer self-assembly approach, deposition of hydrophobic nanoparticles onto hydrophilic carriers in organic media can be easily realized; meanwhile, fluorescent-magnetic dual-functional nanospheres can be further equipped with readable optical and magnetic addresses. The resultant fluorescent-magnetic dual-encoded nanospheres possess both the unique optical properties of QDs and the superparamagnetic properties of γ-Fe2O3, exhibiting good monodispersibility, huge encoding capacity and nanoscale particle size. Compared with the encoded microbeads reported by others, the nanometre scale of the dual-encoded nanospheres gives them minimum steric hindrance and higher flexibility.  相似文献   

2.
Jing L  Li Y  Ding K  Qiao R  Rogach AL  Gao M 《Nanotechnology》2011,22(50):505104
Strongly fluorescent multicore/shell structured CdTe@SiO(2) composite particles of ~ 50 nm were synthesized via the reverse microemulsion method by using CdTe quantum dots co-stabilized by thioglycolic acid and thioglycerol. The optical stability of the CdTe@SiO(2) composite particles in a wide pH range, under prolonged UV irradiation in pure water, or in different types of physiological buffers was systematically investigated. Towards immunofluorescence assay, both poly(ethylene glycol) (PEG) and carboxyl residues were simultaneously grafted on the surface of the silanol-terminated CdTe@SiO(2) composite particles upon further reactions with silane reagents bearing a PEG segment and carboxyl group, respectively, in order to suppress the nonspecific interactions of the silica particles with proteins and meanwhile introduce reactive moieties to the fluorescent particles. Agarose gel electrophoresis, dynamic light scattering and conventional optical spectroscopy were combined to investigate the effectiveness of the surface modifications. Via the surface carboxyl residue, various antibodies were covalently conjugated to the fluorescent particles and the resultant fluorescent probes were used in detecting cancer cells through both direct fluorescent antibody and indirect fluorescent antibody assays, respectively.  相似文献   

3.
反向浓乳液聚合制备嵌套型双亲胶体粒子   总被引:1,自引:0,他引:1  
通过反向浓乳液聚合在亲水的聚丙烯酰胺(PMM)核表面包盖亲油的聚甲基丙烯酸正丁酯(PBMA)壳层来制备嵌套型双亲胶体粒子。壳层的网状或泡孔型结构使得亲水性核可与外界接触,从而使粒子与水相和油相都相容。以粒子对水和柴油的吸收率来表征其双亲性,壳层结构通过扫描电子显微镜(SEM)观测。改变聚合体系配方和反应条件可调节壳层厚度及其结构。壳层由于交联剂作用及分子链间缠结而有很好稳定性。  相似文献   

4.
Abstract

We have developed a novel self-heating, temperature-responsive chromatography system for the effective separation of biomolecules. Temperature-responsive poly(N-isopropylacrylamide-co-N-hydroxymethylacrylamide), poly(NIPAAm-co-HMAAm), was covalently grafted onto the surface of magnetite/silica composites as ‘on-off’ switchable surface traps. The lower critical solution temperature (LCST) of the poly(NIPAAm-co-HMAAm)s was controlled from 35 to 55 °C by varying the HMAAm content. Using the heat generated by magnetic particles in an alternating magnetic field (AMF) we were able to induce the hydrophilic to hydrophobic phase separation of the grafted temperature-responsive polymers. To assess the feasibility of the poly(NIPAAm-co-HMAAm)-grafted magnetite/silica particles as the stationary phase for chromatography, we packed the particles into the glass column of a liquid chromatography system and analyzed the elusion profiles for steroids. The retention time for hydrophobic steroids markedly increased in the AMF, because the hydrophobic interaction was enhanced via self-heating of the grafted magnetite/silica particles, and this effect could be controlled by changing the AMF irradiation time. Turning off the AMF shortened the total analysis time for steroids. The proposed system is useful for separating bioactive compounds because their elution profiles can be easily controlled by an AMF.  相似文献   

5.
We have developed a novel self-heating, temperature-responsive chromatography system for the effective separation of biomolecules. Temperature-responsive poly(N-isopropylacrylamide-co-N-hydroxymethylacrylamide), poly(NIPAAm-co-HMAAm), was covalently grafted onto the surface of magnetite/silica composites as ‘on-off’ switchable surface traps. The lower critical solution temperature (LCST) of the poly(NIPAAm-co-HMAAm)s was controlled from 35 to 55 °C by varying the HMAAm content. Using the heat generated by magnetic particles in an alternating magnetic field (AMF) we were able to induce the hydrophilic to hydrophobic phase separation of the grafted temperature-responsive polymers. To assess the feasibility of the poly(NIPAAm-co-HMAAm)-grafted magnetite/silica particles as the stationary phase for chromatography, we packed the particles into the glass column of a liquid chromatography system and analyzed the elusion profiles for steroids. The retention time for hydrophobic steroids markedly increased in the AMF, because the hydrophobic interaction was enhanced via self-heating of the grafted magnetite/silica particles, and this effect could be controlled by changing the AMF irradiation time. Turning off the AMF shortened the total analysis time for steroids. The proposed system is useful for separating bioactive compounds because their elution profiles can be easily controlled by an AMF.  相似文献   

6.
A processing scheme which uses a single chemical that has multiple functions to achieve both efficient mineral flotation and solids dewatering is presented. Temperature sensitive polymers which display hydrophilic/hydrophobic transitions in response to changes in temperature such as poly (N-isopropyl acrylamide) (PNIPAM) have been found to be useful as such multiple function reagents. This polymer can cause the mineral particles’ surfaces to be hydrophilic at temperature below the critical solution temperature (CST = 32 °C) and hydrophobic at temperature above the CST. Therefore, both particle surface wettability and inter-particle interaction forces are reversibly controllable. When the surface is hydrophilic, particle dispersion is achieved by repulsive inter-particle forces whereas when the surface is hydrophobic, particle aggregation is induced by inter-particle hydrophobic attractive forces. In addition, the hydrophobic surface condition allows for the attachment of particles to bubbles. Flotation and solid settling tests have been conducted with silica and kaolinite suspensions treated with (PNIPAM). Both effective suspension dispersion or hydrophobic aggregation and flotation without any additional collector have been demonstrated. In solid/liquid separation, rapid settling was obtained with hydrophobic aggregation at temperature above the CST and further sediment consolidation (and water release) occurred at temperature below the CST. The approach has the potential to reduce the amount and types of reagents required for mineral processing.  相似文献   

7.
In this article, nano silicon dioxide (SiO2) and carbon nanotubes (CNTs) were chosen as nanoscaffolds to anchor organic oligomer of poly(styrene-alt-maleic acid)(SMA) and further as built nanoligands (donors) to chelate with lanthanide acceptors (i.e. Tb3+) to obtain hybrid fluorescent nanoblocks (HFNB). Firstly the surfaces of nano-SiO2 particles and CNTs were modified to introduce the functionalized groups that would be applied to anchor oligomer SMA. Then, lanthanide (Tb3+) chelated with the anchored SMA. The measurement results indicated these HFNBs have strong sharp fluorescent emission under ultraviolet excitation. Moreover, the modified products of nanoSiO2 and CNTs in each modification step show different dispersing behaviors in organic or aqueous medium. Based on the above results, the final HFNBs have good dispersion in polymer matrix and easy processing characteristic for fluorescent nanocomposites.  相似文献   

8.
The use of organic pigments rather than dyes for printing ink applications in aqueous systems gives an adequate response in terms of image durability. The main issue with pigments for printing applications is the low stability of their suspensions. Due to the hydrophobic character or high surface energy of the particles, they tend to aggregate into bigger particles with eventual settling. In this paper we present a study of particles size, zeta potential (ζ), absorbance and other properties of suspensions prepared with hybrid (intercalated dye-clay) pigment. A stability study was carried out by an encapsulation with anionic PSS [poly (sodium 4-styrenesulfonate)] and cationic PDADMAC [Poly (diallyldimethylammonium-chloride)] polyelectrolytes to improve the stability of the pigment particle suspensions. Preliminary studies indicate the ionic characteristic of the pigment particle, and the stability of their suspension in aqueous media can be improved by the coating with PDADMAC.  相似文献   

9.
Silver nanoparticles were adsorbed preferentially on silica surface to form composite particles using a reverse micelle process that stabilizes the silver particles by an anionic sodium bis(2-ethylhexyl) sulfosuccinate (AOT) surfactant in isooctane solvent together with the silica particles in which their surface being mediated by a cationic poly(allylamine hydrochloride) (PAH) polyelectrolyte. The heterogeneous adsorption was rendered by both electrostatic attraction and hydrophilic/hydrophobic interaction, and was carried out in multiple deposition cycles. The resulting nanocomposite particles were characterized by zeta-potential measurement, electron microscopy, X-ray diffractometry, field-emission electron spectroscopy for chemical analysis (ESCA), and inductively coupled plasma analysis, respectively. In addition, antibacterial activity of the composite particles was examined against Escherichia coli (E. coli) in aqueous environment.  相似文献   

10.
Zeolite L nanocrystals, as inorganic host material containing hydrophobic fluorophore N,N'-bis(2,6-dimethylphenyl)perylene-3,4,9,10-tetracarboxylic diimide in the unidirectional channels, are developed as new labels for biosensor systems. The external surface of the particles is modified with carboxylic acid groups for conjugation to primary amines of biomolecules such as antibodies. Anti-digoxigenin (anti-DIG) is selected to be immobilized on zeolite L via N-hydroxysulfosuccinimide ester linker. Together with DIG, it serves as a good universal binding pair for diverse analyte detection owing to the high binding affinity and low background noise. The conjugates are characterized by the dynamic light scattering technique for their hydrodynamic diameters and by enzyme-linked immunosorbent assay for antigen-antibody binding behavior. The characterizations prove that anti-DIG antibodies are successfully immobilized on zeolite L with their binding activities maintained. The microarray fluorescent sandwich immunoassay based on such nanocrystalline labels shows high sensitivity in a thyroid-stimulating hormone assay with the lower detection limit down to the femtomolar range. These new fluorescent labels possess great potential for in vitro diagnostics applications.  相似文献   

11.
Microscale plasticized PVC particles doped with hydrophobic ionophores are prepared by solvent evaporation of aqueous suspensions of sensing cocktails (poly(vinyl chloride), plasticizer, active sensing components, and tetrahydrofuran) and tested as particulate microoptical sensors. The particles contain either only the chromoionophore ETH 2458 as active reagent or the potassium ionophore BME-44, chromoionophore ETH 5294, and lipophilic anionic sites NaTFPB. The former system functions according to an anion-hydrogen ion coextraction mechanism and shows a Hofmeister anion selectivity pattern, while the latter sensor containing additional ionophores represents the more complex, truly selective optical sensors based on ion-exchange equilibria. Single microspheres are simultaneously characterized spatially and spectrally by fluorescence microscopy, coupled to a spectrometer equipped with a CCD detector. The results indicate that these microspheres respond in complete analogy to traditional thin-film-based optodes previously reported in the literature. The introduction of small, spherical ionophore-based sensing particles that operate on the basis of bulk extraction principles holds the promise of significantly expanding the available chemical palette of microsphere-based analytical assays.  相似文献   

12.
从改性材料和方法两方面综述近几年抗污染超滤膜材料改性的研究进展情况.亲水/疏水两性基团如含聚氧乙烯或含聚乙二醇单体、双离子两性分子和聚2-甲基丙烯酸羟乙酯及聚丙烯酰胺等是制备高性能、化学稳定超滤膜的主要改性材料.采用自由基引发聚合、取代或酯化反应、共混、表面涂层或等离子体表面处理等作为改性的主要方法.膜材料改性研究的拓展大大提高了有机超滤膜的抗污染性能,使其应用更加稳定,使用范围更加广泛.  相似文献   

13.
The development of theranostic systems capable of diagnosis, therapy, and target specificity is considerably significant for accomplishing personalized medicine. Here, a multifunctional rattle‐type nanoparticle (MRTN) as an effective biological bimodal imaging and tumor‐targeting delivery system is fabricated, and an enhanced loading ability of hydrophobic anticancer drug (paclitaxel) is also realized. The rattle structure with hydrophobic Fe3O4 as the inner core and mesoporous silica as the shell is obtained by one‐step templates removal process, and the size of interstitial hollow space can be easily adjusted. The Fe3O4 core with hydrophobic poly(tert‐butyl acrylate) (PTBA) chains on the surface is not only used as a magnetic resonance imaging (MRI) agent, but contributes to improving hydrophobic drug loading amount. Transferrin (Tf) and a near‐infrared fluorescent dye (Cy 7) are successfully modified on the surface of the nanorattle to increase the ability of near‐infrared fluorescence (NIRF) imaging and tumor‐targeting specificity. In vivo studies show the selective accumulation of MRTN in tumor tissues by Tf‐receptor‐mediated endocytosis. More importantly, paclitaxel‐loaded MRTN shows sustained release character and higher cytotoxicity than the free paclitaxel. This theranostic nanoparticle as an effective MRI/NIRF bimodal imaging probe and drug delivery system shows great potential in cancer diagnosis and therapy.  相似文献   

14.
This paper describes the development and study of a disposable and inexpensive microfluidic chip, fabricated from poly(dimethylsiloxane) (PDMS) incorporating conventional chromatographic reversed-phase silica particles (C18) without the use of frits, permanent physical barriers, tapers, or restrictors. The packing of C18 modified silica particles into the microfluidic channels is made possible by the hydrophobic nature and excellent elasticity of PDMS. Keystone-, clamping-, and anchor-effects provide the stability and the compactness of the packing and attenuated wall-effects were observed.  相似文献   

15.
In this report, we show a novel and simple preparation method for obtaining block-copolymer nanoparticles. Regular-sized polymer nanoparticles are formed after evaporation of a good solvent from a polymer solution containing a non-volatile poor solvent and the volatile good solvent. Nanoparticles of poly(styrene-b-sodium acrylate), poly(styrene-b-4-vinylpyridine), and poly(styreneb-isoprene) were prepared by using this method. We also discuss the difference of internal structures between amphiphilic and hydrophobic block-copolymer nanoparticles. From the results of scanning transmission electron microscope (STEM) imaging, the particles of amphiphilic block-copolymers have hollow structures were observed. On the other hand, the particles of a hydrophobic block-copolymer form lamellar micro-phase separation structures.  相似文献   

16.
The nanoparticle dispersity and interfacial property could be considered as a basis of their further application in the nanostructured materials. In this paper, the dispersity and interfacial phenomena of poly(N-isopropylacrylamide) modified gold nanoparticles were investigated. Firstly, such polymer/gold nanocomposites were demonstrated to have a good dispersity in water, tetrahydrofuran, alcohols and also chloroform, so they were used to entrap fluorescent dye-labelled lipids in chloroform as nanocontainers and subsequently delivery the fluorescent lipids into water as nanocarriers. Secondly, when the nanocomposites in water/chloroform mixture were heated above 35 degrees C, the nanocomposite particles could be partially transferred from water into chloroform across the interface, and they would come back into water again as cooling, displaying a reversible thermal response. Moreover, such polymer/gold nanocomposites at the immiscible water/toluene fluids preferred to assembly into 2-dimensional membranes with variable density at the water/oil interface. The special dispersion properties of the poly(N-isopropylacrylamide)/gold nanocomposites provide many potentials in the future.  相似文献   

17.
Co‐delivery of both chemotherapy drugs and siRNA from a single delivery vehicle can have a significant impact on cancer therapy due to the potential for overcoming issues such as drug resistance. However, the inherent chemical differences between charged nucleic acids and hydrophobic drugs have hindered entrapment of both components within a single carrier. While poly(ethylene glycol)‐block‐poly(lactic‐co‐glycolic acid) (PEG–PLGA) copolymers have been used successfully for targeted delivery of chemotherapy drugs, loading of DNA or RNA has been poor. It is demonstrated that significant amounts of DNA can be encapsulated within PLGA‐containing nanoparticles through the use of a new synthetic DNA analog, click nucleic acids (CNAs). First, triblock copolymers of PEG‐CNA‐PLGA are synthesized and then formulated into polymer nanoparticles from oil‐in‐water emulsions. The CNA‐containing particles show high encapsulation of DNA complementary to the CNA sequence, whereas PEG‐PLGA alone shows minimal DNA loading, and non‐complementary DNA strands do not get encapsulated within the PEG‐CNA‐PLGA nanoparticles. Furthermore, the dye pyrene can be successfully co‐loaded with DNA and lastly, a complex, larger DNA sequence that contains an overhang complementary to the CNA can also be encapsulated, demonstrating the potential utility of the CNA‐containing particles as carriers for chemotherapy agents and gene silencers.  相似文献   

18.
The immobilization of Concanavalin A, (Con A), onto flat surfaces formed by ultrathin films of carboxymethylcellulose, CMC, silicon wafers or spin-coated poly(methyl methacrylate), (PMMA), was studied by ellipsometry, contact angle measurements and atomic force microscopy (AFM). The formation of Con A monolayer was only observed onto CMC films. The adsorption constant of Con A onto CMC films was determined as being (2.1+/-0.2) x 10(6) L mol(-1). After assembling Con A onto CMC surfaces, these became more hydrophobic, indicating a molecular orientation of Con A hydrophilic residues to the polysaccharide and Con A hydrophobic residues to the air. The affinity of Con A for hydroxyl rich silicon surfaces or for more hydrophobic PMMA films was very weak, evidencing that nonspecific interactions play a marginal role. For comparison, the immobilization of Con A onto hybrid particles of PMMA/CMC was investigated by means of UV-spectrophotometry. Such particles carry CMC chains attached to the surface, as evidenced by mean zeta potential value of -40 mV. The adsorption constant determined for Con A onto PMMA/CMC particles was one order of magnitude smaller than that found for Con A onto CMC films. This finding indicates that the substrate geometry might influence the molecular arrangement of sugar residues on the surface, consequently affecting the sugar-Con A interaction (cluster effect).  相似文献   

19.
Recent years have witnessed significant progress in molecular probes for cancer diagnosis. However, the conventional molecular probes are designed to be “always‐on” by attachment of tumor‐targeting ligands, which limits their abilities to diagnose tumors universally due to the variations of targeting efficiency and complex environment in different cancers. Here, it is proposed that a color‐convertible, activatable probe is responding to a universal tumor microenvironment for tumor‐specific diagnosis without targeting ligands. Based on the significant hallmark of up‐regulated hydrogen peroxide (H2O2) in various tumors, a novel unimolecular micelle constructed by boronate coupling of a hydrophobic hyperbranched poly(fluorene‐co‐2,1,3‐benzothiadiazole) core and many hydrophilic poly(ethylene glycol) arms is built as an H2O2‐activatable fluorescent nanoprobe to delineate tumors from normal tissues through an aggregation‐enhanced fluorescence resonance energy transfer strategy. This color‐convertible, activatable nanoprobe is obviously blue‐fluorescent in various normal cells, but becomes highly green‐emissive in various cancer cells. After intravenous injection to tumor‐bearing mice, green fluorescent signals are only detected in tumor tissue. These observations are further confirmed by direct in vivo and ex vivo tumor imaging and immunofluorescence analysis. Such a facile and simple methodology without targeting ligands for tumor‐specific detection and imaging is worthwhile to further development.  相似文献   

20.
Hybrid particles comprising aggregated fumed silica nanoparticles as the core and hydrophobic polymers existing around the nanoparticles were prepared by ‘grafting from’ polymerization in emulsions. The emulsion polymerization employed cetyltrimethylammonium bromide (CTAB) as a cationic surfactant and sodium dodecyl sulfate (SDS) as an anionic surfactant, respectively, to stabilize the emulsion polymerization. The polymerization was initiated by the redox reaction between ceric ion Ce(IV) and the amine groups on the surfaces of aminated fumed silica nanoparticles that were modified by 3-aminopropyltriethoxysilane. Infrared spectroscopy and thermogravimetric analysis demonstrated that both poly(methyl methacrylate) (PMMA) and polystyrene (PS) were successfully grafted onto the fumed silica surface. The type of surfactant greatly affected the grafting ratio, monomer-to-polymer conversion, and morphology of the product. When CTAB was used as the surfactant, both the grafting ratio and monomer-to-polymer conversion were lower than when SDS was used, but transmission electron microscopy and light scattering analysis indicated that most of the resultant particles were sub-100 nm hybrid nanoparticles with a non-spherical shape and particles sizes of 75–90 and 57–85 nm for PMMA and PS-grafted fumed silica, respectively. Whereas, when SDS was used as the surfactant, the particles agglomerated to form large irregular clusters or even networks, possibly due to the electrostatic attractions between SDS and Ce(IV) and/or the aminated fumed silica nanoparticles in aqueous solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号