首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A finite element formulation for stress analysis of functionally graded material (FGM) sandwich plates and shell panels under thermal shock is presented in this work. A higher-order layerwise theory in conjunction with Sanders’ approximation for shells is used to develop the finite element formulation for transient stress analysis of FGM sandwich panels. The top and the bottom surfaces of FGM sandwich panels are made of pure ceramic and metal, respectively, and core of the sandwich is assumed to be made of FGM. The temperature profile in the thickness direction of the panels is considered to be varying as per the Fourier’s law of heat conduction equation for unsteady state. The heat conduction equations are solved using the central difference method in conjunction with the Crank–Nicolson approach. Transient thermal displacements of the sandwich panels are obtained using Newmark average acceleration method and the transient thermal stresses are obtained using stress–strain relations, subsequently. Results obtained from the present layerwise finite element formulations are first validated with available solutions in literature. Parametric studies are taken up to study the effects of volume fraction index, temperature dependency of material properties, core thickness, panel configuration, geometric and thermal boundary conditions on transient thermal stresses of FGM sandwich plates and shells.  相似文献   

2.
This article reports a study of a cracked finite isotropic medium under nonclassic thermal shock based on thermoelasticity without energy dissipation. The time history of stress intensity factors as well as the temperature distribution around the crack tip is analyzed thoroughly. The fully coupled governing equations are discretized in the space by employing the extended finite-element method. The Newmark method is used as the time integration scheme to solve discretized equations. The stress intensity factors, which are extracted using the interaction integral method, are compared with other theories of thermoelasticity. The results of a cracked plate under temperature shock demonstrate that the stress intensity factors based on thermoelasticity without energy dissipation are significantly greater than those based on classic and Lord–Shulman models, whereas the peaks of stress intensity factors under heat flux shock are nearly equal for various theories of thermoelasticity. Furthermore, a mobile cold region is created along slanted crack in the temperature distribution, in which the temperature is less than the applied thermal boundary condition.  相似文献   

3.
In this work, we consider the problem for an infinite medium with a spherical cavity on temperature-dependent properties subjected to a stress shock and thermal shock under the fractional-order theory of generalized thermoelasticity. The modulus of elasticity and the coe?cient of thermal conductivity are taken as linear function of temperature. The governing equations for the problem are formulated and then solved by Laplace transform together with its numerical inversion. The nondimensional temperature, displacement, radial stress, and hoop stress are obtained and illustrated graphically. In the calculation, the emphasis is focused on investigating the effect of temperature-dependent properties on the variations of the considered variables. The graphical results indicate that the temperature-dependent modulus of elasticity plays a significant role on all the physical quantities.  相似文献   

4.
Amit Kumar 《热应力杂志》2018,41(8):1080-1099
A unified enriched finite element (FE) formulation for two generalized thermoelsaticity theories is developed for the transient thermal shock problems in one and two dimensional domains. Both the displacement and temperature field interpolations are enriched with harmonic functions defined in the local element coordinates. The coupled field finite element equations are derived using the generalized Hamilton’s principle and solved directly in time domain using the standard Newmark-β time integration technique as opposed to the transform techniques usually adopted for thermal shock problems. The method is assessed in comparison with the Laplace transform based analytical solutions and FE solutions with dynamic meshing available in the literature. It is shown that the present solution with a static uniform mesh captures the sharp discontinuities in the temperature and displacement fields and the wave properties of heat conduction very accurately, practically eliminating the severe drawbacks of the conventional FE solutions such as the spurious undulations and flattening out, while maintaining better computational e?ciency.  相似文献   

5.
This article is concerned with thermoelastic behavior of an elastic media with temperature-dependent properties. The formulations of anisotropic media with variable material properties are proposed by the Clausius inequality and generalized theory of thermoelasticity with one relaxation time, where the higher-order expansion of the Helmholtz free energy with respect to increment temperature is used to obtain the relations between each parameter and real temperature. The governing equations of isotropic media with temperature-dependent properties are obtained based on these formulations. The problem of a half-space formed of an isotropic media with variable material properties and subjected to a sudden temperature rise in the boundary has been conducted. The propagations of thermoelastic wave and thermal wave, as well as the distributions of displacement, temperature, and stresses in the different cases, including constant properties and variable properties with specific temperature and real temperature, are obtained and plotted to reveal the effect of variable material properties on thermoelastic behavior.  相似文献   

6.
Kanishk Sharma 《热应力杂志》2017,40(11):1417-1441
The present work aims to study the elastoplastic buckling, postbuckling, and failure behavior of perforated Ni/Al2O3 functionally graded material (FGM) plate with various shaped cutouts (i.e., circular, square, diamond, and elliptical) of various sizes under thermomechanical loading conditions using finite element method (FEM). The nonlinear FEM formulation is based on the first-order shear deformation theory and von Kármán’s nonlinear kinematics in which the material nonlinearity is incorporated. The nonlinear temperature-dependent thermoelastic material properties of FGM plate are varied in the thickness direction by controlling the volume fraction of the constituent materials (i.e., ceramic and metal) as per a power law, and Mori–Tanaka homogenization scheme is applied to evaluate the properties at a particular thickness coordinate of FGM. In accordance with the Tamura–Tomota–Ozawa model (TTO model), the ceramic phase of FGM is considered to be elastic, whereas the metal phase is assumed to be elastoplastic. Further, the elastoplastic analysis of FGM is assumed to follow J2 plasticity with isotropic hardening. After validating the present formulation with the results available in the literature, various numerical studies are conducted to examine the effects of material inhomogeneity, thermal loading, cutout shape, and size on the elastoplastic buckling, postbuckling, and failure behavior of perforated FGM plate. It is observed that for smaller cutout sizes, the FGM plate with square shape cutout possesses maximum value of ultimate failure load; however, for larger cutout size, the FGM plate with diamond cutout depicts highest ultimate failure load. Furthermore, for all cutout shapes, the ultimate failure load of FGM plate decreases with an increase in cutout size. It is also revealed that irrespective of shape and size of cutout, the material plastic flow has considerable effect on postbuckling path of FGM plate, and under thermomechanical loading conditions, the FGM plate shows destabilizing response after the point of maximum postbuckling strength.  相似文献   

7.
In the present paper, the linear theory of thermoelasticity of double porosity materials under local thermal non-equilibrium is considered and the basic boundary value problems are investigated by using the boundary integral equation method (potential method). Indeed, the fundamental solution of system of steady vibrations equations of the considered theory is constructed explicitly by means of elementary functions and its basic properties are established. A Galerkin-type solution to this system of equations is presented and the completeness of this solution is proved. The basic internal and external boundary value problems of steady vibrations are formulated and the uniqueness theorems for classical solutions of these problems are proved. The basic properties of the surface and volume potentials and singular integral operators are established. Finally, the existence theorems for classical solutions of the above-mentioned boundary value problems are proved by using the potential method and the theory of singular integral equations.  相似文献   

8.
This paper investigates the nonlinear dynamic response of thick functionally graded materials (FGM) plates using the third-order shear deformation plate theory and stress function. The FGM plate is assumed to rest on elastic foundations and subjected to thermal and damping loads. Numerical results for dynamic response of the FGM plate are obtained by Runge–Kutta method. The results show the influences of geometrical parameters, the material properties, the elastic foundations, and thermal loads on the nonlinear dynamic response of FGM plates.  相似文献   

9.
The dynamic response of a two-dimensional generalized thermal shock problem is investigated in the context of the fractional order theory of thermoelasticity proposed by Sherief et al. To demonstrate the solution process, a thermoelastic half-space subjected to a thermal shock on its bounding surface is considered in detail. The governing equations for the problem are formulated and then solved by normal mode analysis. The distributions of the considered nondimensional temperature, displacement, and stress are obtained and illustrated graphically. The effect of fractional order parameter on the variations of the considered variables is investigated, and the results show that the fractional order parameter has significant influence on the variations of the considered variables.  相似文献   

10.
This article studies the nonlinear thermal buckling and postbuckling of eccentrically stiffened functionally graded plates on elastic foundation subjected to mechanical, thermal, and thermomechanical loads. The noticeable point of this study is using the Reddy's higher order shear deformation plate theory and a general formula for the forces and moments of eccentrically stiffened functionally graded material (FGM) plate, which takes into account the influence of temperature on both the FGM plate and stiffeners. The article used the Galerkin method, stress function, and iterative method to determine the thermal buckling loads and postbuckling response of the eccentrically stiffened FGM plates in three different cases of boundary conditions. The effects of material, temperature-dependent material properties, elastic foundations, boundary conditions, outside stiffeners, and temperature on the buckling and postbuckling loading capacity of the FGM plates in thermal environments are analyzed and discussed. A good agreement is obtained by comparing the present analysis with other available literature.  相似文献   

11.
The principal aim of this article is to investigate the thermoelastic problems on an elliptical plate in which interior heat sources are generated within the solid, with compounded effect due to sectional heating and boundary conditions of the Dirichlet type. The analysis is based on the small-deflection theory of the elliptical plate and performed in the elliptical coordinate system. In addition, the intensities of bending moments, twisting moments, etc., are formulated involving the Mathieu and modified functions and their derivatives. The analytical solution for the thermal stress components is obtained in terms of resultant forces and resultant moments.  相似文献   

12.
13.
This article is aimed at determining the thermoelastic displacement, stress, and temperature in a thick circular plate of finite thickness and infinite extent whose lower and upper surfaces are traction free, subjected to a given axisymmetric temperature distribution. The problem is formulated in the context of fractional order thermoelasticity theory with finite wave speeds. Integral transform technique is used to obtain the general solution in Laplace transform domain. Inversion of the Laplace transforms is done using a numerical scheme. A mathematical model is prepared for a copper material plate. Thermoelastic stresses, temperature and displacement are shown graphically and the effects of fractional-order parameters are discussed.  相似文献   

14.
A problem on the identification of time-dependent temperature on one of the limiting surfaces of a radially inhomogeneous hollow cylinder is formulated and solved under the temperature and radial displacement given on the other limiting surface. The analysis of temperature and thermal stress distribution in the cylinder is performed. The solution has been constructed by the reduction to an inverse thermoelasticity problem. By making use of the finite difference method, a stable solution algorithm is suggested for the analysis of inverse problem. The solution technique is verified numerically by making use of the solution to a relevant direct problem. It is shown that the proposed technique can be e?ciently used for the identification of a heat flux or unknown parameters (the surrounding temperature or the heat-exchange coe?cient) in the third-kind boundary conditions.  相似文献   

15.
Wenzhi Yang 《热应力杂志》2013,36(8):993-1010
In this paper, a thermoelastic analytical model is established for a functionally graded half-plane containing a crack under a thermal shock in the framework of hyperbolic heat conduction theory. The moduli of functionally graded materials (FGMs) are assumed to vary exponentially with the coordinates. By employing the Fourier transform and Laplace transform, coupled with singular integral equations, the governing partial differential equations under mixed, thermo-mechanical boundary conditions are solved numerically. For both the temperature distribution and transient stress intensity factors (SIFs) in FGMs, the results of hyperbolic heat conduction model are significantly different than those of Fourier’s Law, which should be considered carefully in designing FGMs.  相似文献   

16.
The dynamic growth of void in an infinite elastic-viscoplastic medium under thermal shock is analyzed theoretically. The technique of direct integration is presented to obtain the analytic solutions of stress and displacement. The initial purely elastic deformation before the viscoplastic deformation is considered. Especially, the nonlinear ODE for moving interface of the elastic and viscoplastic zone is derived from the interface conditions. The dynamic evolution of void growth is different from the static case, since the moving interface leads to the intrinsic nonlinearity. The numerical results indicate that the effect of viscosity has significant influence on void growth.  相似文献   

17.
Based on Reissner’s mixed variational theorem (RMVT), a unified formulation of finite layer methods (FLMs) is developed for the quasi three-dimensional (3-D) thermal buckling analysis of simply-supported, sandwich piezoelectric plates embedded with a functionally graded elastic material (FGEM) core, the material properties of which are considered to be thickness- and temperature-dependent. The plate is subjected to a uniform temperature change and with open-/closed-circuit boundary conditions on the lateral surfaces. A 3-D linear buckling theory is used, in which a set of membrane stresses is assumed to exist just before buckling occurs, and these membrane stresses are determined using a set of predefined 3-D deformations for the pre-buckling state. The material properties of the FGEM core are assumed to obey the power-law distributions varying through the thickness coordinate of the core according to the volume fractions of the constituents. The effective material properties are estimated using the rule of mixtures and Mori-Tanaka’s model. The accuracies and convergence rates of the FLMs with various orders, as used for expanding the elastic and electric variables in the thickness direction, are assessed by comparing their solutions with the exact 3D and accurate two-dimensional ones available in the literature.  相似文献   

18.
In the present study, a simple four-unknown exponential shear deformation theory is developed for the bending of functionally graded material (FGM) rectangular plates resting on two-parameter elastic foundation and subjected to nonlinear hygrothermomechanical loading. The elastic properties, coefficient of thermal expansion, and coefficient of moisture expansion of the plate are assumed to be graded in the thickness direction according to a simple power-law distribution in terms of volume fractions of material constituents. Unlike first-order and other higher-order plate theories, the present theory has four independent unknowns. The in-plane displacement field of the present theory uses exponential functions in terms of thickness co-ordinate for calculating out-of-plane shearing strains. The transverse displacement includes bending and shear components. The principle of virtual displacement is employed to derive the governing equations and associated boundary conditions. A Navier solution technique is employed to obtained an analytical solutions. The elastic foundation is modelled as two-parameter Winkler–Pasternak foundation. The numerical results obtained are compared with previously published results wherever possible to prove the efficacy and accuracy of the present theory. The effects of stiffness and gradient index of the foundation on the hygrothermomechanical responses of the plates are discussed.  相似文献   

19.
This work presents an analytical approach to investigate the mechanical and thermal buckling of functionally graded materials sandwich truncated conical shells resting on Pasternak elastic foundations, subjected to thermal load and axial compressive load. Shells are reinforced by closely spaced stringers and rings, in which the material properties of shells and stiffeners are graded in the thickness direction following a general sigmoid law distribution and a general power law distribution. Four models of coated shell-stiffener arrangements are investigated. The change of spacing between stringers in the meridional direction also is taken into account. Two cases on uniform temperature rise and linear temperature distribution through the thickness of shell are considered. Using the first-order shear deformation theory, Lekhnitskii smeared stiffener technique and the adjacent equilibrium criterion, the linearization stability equations have been established. Approximate solution satisfies simply supported boundary conditions and Galerkin method is applied to obtain closed-form expression for determining the critical compression buckling load and thermal buckling load in cases uniform temperature rise and linear temperature distribution across the shell thickness. The effects of temperature, foundation, core layer, coating layer, stiffeners, material properties, dimensional parameters and semi-vertex angle on buckling behaviors of shell are shown.  相似文献   

20.
In this article, the nonlinear free vibration behavior of functionally graded (FG) spherical shell panel is examined under nonlinear temperature field. The functionally graded material (FGM) constituents are assumed to be the function of temperature and the thermal conductivity. The effective \hboxmaterial properties of the FGM are obtained using the Voigt micromechanical model through power-law distribution. The mathematical model of the shell panel is developed using Green–Lagrange nonlinear kinematics in the framework of the higher order shear deformation theory. The desired governing \hboxequation of the FG shell panel under thermal environment is obtained using the classical Hamilton's principle. The domain is discretized with the help of the \hboxisoparametric finite element steps and the responses are computed using the direct \hboxiterative method. The convergence behavior of the present nonlinear numerical model has been checked and compared with the previous reported results. Numerous examples have been demonstrated for the FG spherical panel to show the influence of different geometrical and material parameters and support conditions on the linear and nonlinear frequency parameters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号