首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The electrical conductivity of M2O3-ZrO2 compositions containing 6 to 24 mole % M2O3, where M represents La, Sm, Y, Yb, or Sc, was examined. Only Sm2O3, Y2O3, and Yb2O3 formed cubic solid solutions with ZrO2 over most of this substitutional range. Scandia forms a wide cubic solid solution region with ZrO2 at temperatures above 130°C whereas the cubic solid solution region at room temperature is narrow (6 to 8 mole % Sc2O3). Lanthana additions to ZrO2produced no fluorite-type cubic solid solutions within the compositional range investigated. Generally, the electrical conductivity of these cubic solid solutions increased as the size of the substituted cation decreased and the electrical conductivity for each binary system attained a maximum at about 10 to 12 mole % M2O3.  相似文献   

2.
The effect of additives on the sintering of ThO2 and ThO2-Y2O3 compacts and loose powders was studied by isothermal shrinkage measurements and by scanning electron micrography. Small amounts of the oxides of Ni, Zn, Co, and Cu reduced the sintering temperature. The behavior of NiO at a concentration of 0.8 wt% (2.5 mol%) was studied in detail and found to yield high-density bodies at temperatures below 1500°C. The presence of Y2O3 as a separate phase increases the rate of sintering of ThO2, but smaller amounts of NiO are much more potent. The major portion of the densification occurs very rapidly and is followed by a much slower sintering process typical of volume diffusion. The fast early shrinkage may be caused by the capillary forces of a liquid, but since no evidence of melting was found, a solid-state mechanism may be responsible.  相似文献   

3.
Compositions in the system ThO2-YO1.5 were coprecipitated as oxalates and converted to oxides. Disks were pressed and sintered in oxygen at 1400° to 2200°C. Densities of the sintered disks were 96 to 98% of theoretical. Solid solutions with the fluorite-type structure were formed up to 20 to 25 mole % YO1.5 at 1400°C and up to 45 to 50 mole % YO1.5 at 2200°C. Density data showed that these solid solutions correspond to Th1— x Y x O2—0.5 x , having a complete cation sub-lattice filled by Th4+ and Y3+ ions, and vacancies in the anion sublattice. The observed increase in electrical conductivity with increase in YO1.5content is consistent with charge transport by oxygen ions through a vacancy mechanism. Approximately 7 mole % ThO2 is soluble in YO1.5 at 2200°C. Density results indicate an anion interstitial structure for the Y2O3 phase. Transference number measurements indicate that the electrical conductivities are only partly due to ions.  相似文献   

4.
The electrical conductivity and thermoelectric power of highpurity polycrystalline ThO2 in thermodynamic equilibrium with the gas phase were measured as a function of temperature from 1000° to 1600°C and as a function of oxygen partial pressure from 1 to 10−22 atm. An n -type electronic contribution to the conductivity is observed above 1400°C at low oxygen pressures. An analytic solution is presented for the oxygen pressure dependence of the total conductivity in the mixed ionicelectron hole conduction region observed at higher oxygen pressures. The activation energies for p -type and ionic conduction are 1.0 and 0.9 eV, respectively. The combined conductivity and thermal emf data give a lower limit of ∼6 cm2/V-s for the electron hole mobility.  相似文献   

5.
The nonlinear volt-ampere characteristics and small-signal ac capacitance and resistance of sintered ZnO containing 0.5 mol% Bi2O3 were measured. Many of the electrical properties are related directly to the microstructure, which consists of conductive ZnO grains separated by a continuous amorphous Bl2O3, phase. The origin of the nonlinear conduction in the intergranular phase was confirmed by experiments with evaporated thin films. The proposed conduction mechanism in varistors containing ZnO and Bi2O3 is a combination of hopping and tunneling in the amorphous phase.  相似文献   

6.
7.
8.
9.
Adiabatic bulk modulus, Bs , of polycrystalline MgO and Al2O3 was measured from 298° to 1473°K using the resonance technique. The Grüneisen constant, calculated from the measured bulk modulus, was constant over the whole temperature range (1.53 for MgO and 1.34 for Al2O3). Another important parameter,     , is constant at high temperature and is 3.1 for MgO and 3.6 for Al2O3. The Poisson's ratio increases linearly with temperature for MgO and Al2O3. To describe the change of bulk modulus with temperature a theoretical equation was verified by using the foregoing constants. A practical form of this theoretical equation is where Bs0 is the adiabatic bulk modulus at 0°K, δ is the quantity     , γ is the Grüneisen constant, H is the enthalpy. The experimental data are described very well by this equation, which is equivalent to the empirical equation suggested by Wachtman et al., BsT= Bs0 - CT exp (-Tc/T) , where C and Tc are empirical constants.  相似文献   

10.
The existence of compounds with 1:1, 3:2, and 3:1 ThO2:P2O5 ratios in the system ThO2-P2O5 was confirmed. A 1:2 compound found by previous workers was not investigated, and their 2:1 compound was not detected; however, extensive solid solution on either side of the 3:2 compound was established. The linear thermal expansion behavior of the compounds and solid solutions was determined.  相似文献   

11.
The phase equilibrium diagram of the system ThO2-Nb2O was redetermined near the composition Th2Nb2O9. This phase was found to melt incongruenlly at 1362°C, with a eutectic temperature at ∼1350°C. The peritectic and eutectic compositions must occur between 60 and ∼64 mol % ThO2. From single crystal and powder X-ray diffraction data, Th2 Nb2O9 was found to have a primitive monoclinic unit cell with a = 6.711(1), b = 25.254(5), c=7.757(1)×10−1nm, β=90.46 (1)°.  相似文献   

12.
Guarded measurements of the electrical conductivity of high-purity, polycrystalline Y2O3 in thermodynamic equilibrium with the gas phase were made under controlled temperature and oxygen partial pressure conditions. Data are presented as isobars from 1200° to 1600°C, and as isotherms from oxygen partial pressures of 10−1 to 10−17 atm. The ionic contribution to the total conductivity, determined by the blocking electrode polarization technique, was less than 1% over the entire range of temperatures and oxygen partial pressures studied. Yttria is shown to be an amphoteric semiconductor with the region of predominant hole conduction shifting to higher pressures at higher temperatures. In the region of p -type conduction, the conductivity is represented by the expression σ= 1.3 × 103 p O23/16 exp (-1.94/kT). The observed pressure dependence is attributed to the predominance of fully ionized yttrium vacancies. Yttria is shown to be a mixed conductor below 900°C.  相似文献   

13.
The effects of stress, temperature, grain size, porosity, and O2 partial pressure on the creep of polycrystalline Fe2O3 were studied in the range 770° to 1105°C by tests in 4-point bending and compression. Deformation rates are controlled by the stress-directed diffusion of either oxygen or iron. Diffusion coefficients computed from the Nabarro-Herring formula modified by including an empirical porosity-correction term are also consistent with the values reported for oxygen and iron.  相似文献   

14.
The phase equilibrium relations in the systems Y2O3-Al2O3 and Gd2O3-Fe2O3 were examined. Each system has two stable binary compounds. A 3:s molar ratio garnet-type compound exists in both systems. The 1:1 distorted perovskite structure is stable in the system Gd2O3-Fe2O3 but only metastable in the system Y2O3-AI2O3. This interesting example of metastable formation and persistence of a compound with ions of high Z/r values explains the discrepancies in the literature on the structure of the composition YA1O3. A new 2:1 molar ratio cubic phase has been found in the system Y2O3-A12O3. Since silicon can be completely substituted for aluminum in this compound, the aluminum ions are presumably in fourfold coordination.  相似文献   

15.
The Phase relations of the system Gd2O3-Ta2O5 in the composition range 50 to100 mol% Gd2O3 was studied by solidstate reactions at 1350°, 1500°, or 1700°C and by thermal analyses up to the melting temperatures. Weberite-type orthorhombic phase (W2 phase, space group C2221) with the composition of Gd3 TaO7 seems to melt incongruently; at about 2040°C, although this Gd3TaO7 Phase was previously reported to melt congruently. A new fluorite-type cubic phase (F phase, space group Fm3m ) was found for the first time above 1500°C in the system. It melts congruently with the composition of about 80mol% Gd2O3at 2318° 3°C. A phase diagram was proposed for the system Gd2O3–Ta2O5 in the Gd2O3–rich portion  相似文献   

16.
In the binary system PbO–LazO3 only one compound, 4PbO.La2O3, exists; it is flanked by two eutectics. The structure of the compound, although of lower symmetry, is intimately related to the C modification of the rare earths. Below 800° to 1000°C, metastable solid solutions are formed from oxide mixtures coprecipitated from mixed solutions of the nitrates, the cubic parameter a = 5.66 A, if extrapolated to pure La2O3, corresponding to half the a parameter of the C form of La2O3. The solid solutions existing between the compositions La2O3–2Pb0 and pure La2O3 have a cubic face–centered lattice and obey Vegard's rule. The systems of PbO with Sm2O3 and Gd2O8 are quite similar to that with La2O3. The compound Sm2O3.4Pb0 decomposes at 1000°C with evaporation of PbO; Sm2O3 remains in the B modification.  相似文献   

17.
The phase relations for the Sc2O3-Ta2O5 system in the composition range of 50-100 mol% Sc2O3 have been studied by using solid-state reactions at 1350°, 1500°, or 1700°C and by using thermal analyses up to the melting temperatures. The Sc5.5Ta1.5O12 phase, defect-fluorite-type cubic phase (F-phase, space group Fm 3 m ), ScTaO4, and Sc2O3 were found in the system. The Sc5.5Ta1.5O12 phase formed in 78 mol% Sc2O3 at <1700°C and seemed to melt incongruently. The F-phase formed in ∼75 mol% Sc2O3 and decomposed to Sc5.5Ta1.5O12 and ScTaO4 at <1700°C. The F-phase melted congruently at 2344°± 2°C in 80 mol% Sc2O3. The eutectic point seemed to exist at ∼2300°C in 90 mol% Sc2O3. A phase diagram that includes the four above-described phases has been proposed, instead of the previous diagram in which those phases were not identified.  相似文献   

18.
The phase relations for the system y2o3–Ta2o5 in the composition range 50 to 100 mol% Y2O3 have been studied by solid-state reactions at 1350°, 1500°, or 17000C and by thermal analyses up to the melting temperatures. Weberite-type orthorhombic phases (W2 phase, space group C2221), fluorite-type cubic phases (F phase, space group Fm3m )and another orthorhombic phase (O phase, space group Cmmm )are found in the system. The W2 phase forms in 75 mol% Y2O3 under 17000C and O phase in 70 mol% Y2O3 up to 1700°C These phases seem to melt incongruently. The F phase forms in about 80 mol% Y2O3 and melts congruently at 2454° 3°C. Two eutectic points seem to exist at about 2220°C 90 mol% Y2O3, and at about 1990°C, 62 mol% Y2O3. A Phase diagram including the above three phases were not identified with each other.  相似文献   

19.
Crystallographic notation for Al2O3 is reviewed, with particular reference to the correct basis to be used in describing slip systems. A Groves-and-Kelly calculation showed that the combination of pyramidal slip on {11¯02}<11¯01> and basal slip on (0001){112¯0} will allow homogeneous deformation of Al2O3 polycrystals. Furthermore, operation of either the {101¯1}<1¯011> or the {011¯2}<2¯021> slip system will also satisfy the Von Mises criterion, since each system is capable of 5 independent deformation modes. Electron microscopy of an Al2O3 polycrystal deformed ≅5% at 1150°C under a hydrostatic confining pressure confirmed that pyramidal slip had occurred.  相似文献   

20.
The electromechanical properties of PbTiO3 ceramics, modified by substitution of Sm or Gd + Nd (same average atomic radius as Sm) for Pb, were studied in the range of 6% to 14% substitution. The modified PbTiO3 ceramics were stable, and the Curie temperature decreased linearly over this composition range. The 10% Sm composition had a large anisotropy in the coupling factor ratio, k t / k p , and a similar, but weaker, effect developed for 12% (1/2 Gd + 1/2 Nd). This indicates that other than average ion size may influence the electromechanical coupling factor ratio.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号