首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This investigation was carried out to study allergic contraction of passively sensitized human airway smooth muscle in response to specific antigen challenge. We attempted to determine the role played by histamine, slow reaction substances (SRSs), and cyclooxygenase products in the mediation of this response in tracheal smooth muscle. Tissues were passively sensitized with serum from ragweed-sensitive patients (15 h, 4 degrees C). Subsequent challenge with ragweed antigen produced a slowly developing contraction. The peak contraction to a dose producing a maximal response was 37 +/- 6% of the carbachol maximum. Mepyramine (5 X 10(-6) M) did not alter the contraction. Methylprednisolone (2 X 10(-5) M) attenuated the response to antigen but had no significant effect on the contractile response to arachidonic acid. Indomethacin (5.6-28 X 10(-6) M) enhanced the peak antigen-induced contractions by 25 +/- 11% whereas 5,8,11,14-eicosatetraynoic acid (6.4 X 10(-5) M) selectively attenuated the antigen-induced contraction by 86 +/- 12%. Nordihydroguarietic acid (6-12 X 10(-6) M) attenuated both the antigen plus arachidonate induced responses. FPL-55712 (1-2 X 10(-6) M) antagonized the contractions to antigen. Compound 48/80 and goat antihuman immunoglobulin E produced similar slowly developing contractions in sensitized and in some nonsensitized tissues. These responses, except for an early component of the response to 48/80, were independent of histamine and were reversed by FPL-55712. These findings suggest that arachidonic acid metabolites mediate (slow reacting substances) and modulate (prostaglandins) allergic contraction of human airway smooth muscle while any histamine released contributes little or nothing to the contraction in the larger airways.  相似文献   

2.
Within the respiratory epithelium of asthmatic patients, copper/zinc-containing superoxide dismutase (Cu/Zn SOD) is decreased. To address the hypothesis that lung Cu/Zn SOD protects against allergen-induced injury, wild-type and transgenic mice that overexpress human Cu/Zn SOD were either passively sensitized to ovalbumin (OVA) or actively sensitized by repeated airway exposure to OVA. Controls included nonsensitized wild-type and transgenic mice given intravenous saline or airway exposure to saline. After aerosol challenge to saline or OVA, segments of tracheal smooth muscle were obtained for in vitro analysis of neural control. In response to electrical field stimulation, wild-type sensitized mice challenged with OVA had significant increases in cholinergic reactivity. Conversely, sensitized transgenic mice challenged with OVA were resistant to changes in neural control. Stimulation of tracheal smooth muscle to elicit acetylcholine release showed that passively sensitized wild-type but not transgenic mice released more acetylcholine after OVA challenge. Function of the M(2) muscarinic autoreceptor was preserved in transgenic mice. These results demonstrate that murine airways with elevated Cu/Zn SOD were resistant to allergen-induced changes in neural control.  相似文献   

3.
We have studied the effect of repeated in vivo antigen exposure on in vitro airway responsiveness in sensitized sheep. Fourteen sheep underwent five biweekly exposures to aerosolized Ascaris suum antigen or saline. Following this exposure regimen, the animals were killed and tracheal smooth muscle and lung parenchymal strips were prepared for in vitro studies of isometric contraction in response to histamine, methacholine, prostaglandin F2 alpha, and a thromboxane A2 analogue. No alteration in tracheal smooth muscle responsiveness was observed between saline- and antigen-exposed tissue. In contrast, by use of lung parenchymal strips as an index of peripheral airway responsiveness, significant increases in responsiveness to histamine and a thromboxane A2 analogue (10(-6) and 10(-5) M) were observed in antigen-exposed tissue compared with saline controls. These results demonstrate that repeated antigen exposure in vivo selectively increase the responsiveness of peripheral lung smooth muscle to certain chemical mediators of anaphylaxis.  相似文献   

4.
Previous studies suggested that although rats that were passively sensitized [monoclonal murine immunoglobulin E (IgE)] would respond to pulmonary antigen challenge with an immediate increase in resistance, they exhibited no late increases in resistance, unlike late changes in rats actively sensitized to preferentially produce IgE antibody. We hypothesized that passively sensitized rats also would not develop antigen-induced pulmonary inflammation. In a blinded protocol we compared immediate responses and pulmonary resistance and inflammation at 8, 19 and 24 h after challenge with placebo antigen, with dinitrophenol-bovine serum albumin (DNP-BSA) to elicit a passively sensitized response, or with ovalbumin (OA) to elicit an actively sensitized response. Despite similar immediate responses to OA and DNP-BSA, only the rats challenged with OA had marked inflammatory changes and a significant incidence of late elevations in resistance. Inflammation scores and lung resistance were significantly correlated only in the OA group. We also observed that anesthesia with fentanyl/droperidol significantly attenuated the immediate but not the late responses to antigen challenge, compared with rats anesthetized with ketamine. We conclude that IgE-mediated immediate responses to pulmonary antigen challenge are insufficient, and may be unnecessary, to initiate antigen-induced late inflammatory changes.  相似文献   

5.
To determine whether the release of newly formed mediators such as the peptidoleukotrienes and platelet-activating factor might modulate the food protein induced jejunal smooth muscle contraction observed in sensitized rats, Hooded-Lister rats were sensitized by injection of ovalbumin (10 micrograms i.p.) and controls were sham sensitized with saline. Fourteen days later the contractility of longitudinally (n = 9) and circularly (n = 9) oriented jejunal segments (mucosa intact) were examined in standard tissue baths in response to antigen, leukotrienes, and platelet-activating factor alone and in the presence of a specific leukotriene receptor antagonist (MK-571), a 5-lipoxygenase inhibitor (L651,392), and a platelet-activating factor receptor antagonist (WEB 2086). Although the responses of control and sensitized tissues to stretch and 10(-4) M bethanechol were similar, only sensitized tissues contracted in response to antigen (1 mg/mL). MK-571 (10(-5) M) reduced or significantly inhibited the contractile response of sensitized longitudinally and circularly oriented tissues to 10(-7) M leukotrienes C4, D4, or E4, but neither L651,392 (10(-4) M) nor MK-571 (10(-5) M) significantly reduced the contractile response of sensitized tissues to antigen challenge. WEB 2086 (10(-4) M) significantly (p less than 0.01) reduced the contractile response of sensitized longitudinally and circularly oriented tissues to 10(-7) M platelet-activating factor but did not significantly alter the response to antigen in longitudinally (45% of control, p = 0.14) or circularly (118% of control, ns) oriented jejunal smooth muscle. In this model leukotrienes and platelet-activating factor play an insignificant role in modulating food protein induced jejunal smooth muscle contraction in intestinal anaphylaxis.  相似文献   

6.
Mechanical removal of the airway epithelium alters the in vitro reactivity of airway smooth muscle. The modulation of reactivity may involve the release of inhibitory and excitatory factors from epithelial cells. Guinea pigs sensitized with ovalbumin have been used as an animal model of airway hyperreactivity. We evaluated the influence of the epithelium on the reactivity of in vitro tracheal smooth muscle from control and ovalbumin-sensitized guinea pigs, and the extent to which the presence of the epithelium affects the contractile response to in vitro challenge with ovalbumin. In both control and ovalbumin-sensitized tissues, epithelium removal increased the sensitivity of the preparations to histamine, methacholine and isoproterenol to a similar extent, i.e., 2- to 2.5-fold. Epithelium removal resulted in an 8.1-fold increase in sensitivity to ovalbumin in sensitized tissues. The epithelium appears not only to modulate the reactivity of the tissues to bronchoactive agents, but it also influences the magnitude of the contractile response following antigen challenge.  相似文献   

7.
Exposure of sensitized guinea pig tracheal rings or human bronchial strips to specific antigen in vitro resulted in a rapidly developing, prolonged contraction that was resistant to washing. Treatment of the tissue with diphenhydramine, a histamine H1 antagonist, before antigen delayed the onset and decreased the amplitude of the initial phase of the contraction but did not reduce the duration. Diphenhydramine treatment after development of the contraction did not relax the airway tissue. Antigen-induced histamine release from guinea pig trachea and from human bronchus was complete within the initial 15% of the duration of the contraction. Treatment of sensitized airway tissue with FPL 55712, a SRS-A antagonist, before antigen selectively inhibited the prolonged phase of the response. FPL 55712 administration after the development of antigen-induced contraction resulted in relaxation. These data suggest that both histamine and SRS-A are involved in the response of sensitized guinea pig and human airway tissue to antigen, with histamine mediating the early phase of the contraction and SRS-A primarily mediating the protracted phase.  相似文献   

8.
Asthma is characterized by airway inflammation with intense eosinophil infiltration and mucus hyper-production, in which antigen-specific Th2 cells play critical roles. Nuclear factor-κB (NF-κB) pathway has been demonstrated to be essential for the production of Th2 cytokines and chemokines in the airways in murine asthma models. In the present study, we examined the effect of GS143, a novel small-molecule inhibitor of IκB ubiquitination, on antigen-induced airway inflammation and Th2 cytokine production in mice. Intranasal administration of GS143 prior to antigen challenge suppressed antigen-induced NF-κB activation in the lung of sensitized mice. Intranasal administration of GS143 also inhibited antigen-induced eosinophil and lymphocyte recruitment into the airways as well as the expression of Th2 cytokines and eotaxin in the airways. Moreover, GS143 inhibited antigen-induced differentiation of Th2 cells but not of Th1 cells in vitro. Taken together, these results suggest that IκB ubiquitination inhibitor may have therapeutic potential against asthma.  相似文献   

9.
Cysteinyl leukotrienes (CysLTs) exert potent proinflammatory actions and contribute to many of the symptoms of asthma. Using a model of allergic sensitization and airway challenge with Aspergillus fumigatus (Af), we have found that Th2-type inflammation and airway hyperresponsiveness (AHR) to methacholine (MCh) were associated with increased LTD(4) responsiveness in mice. To explore the importance of increased CysLT signaling in airway smooth muscle function, we generated transgenic mice that overexpress the human CysLT1 receptor (hCysLT(1)R) via the alpha-actin promoter. These receptors were expressed abundantly and induced intracellular calcium mobilization in airway smooth muscle cells from transgenic mice. Force generation in tracheal ring preparations ex vivo and airway reactivity in vivo in response to LTD(4) were greatly amplified in hCysLT(1)R-overexpressing mice, indicating that the enhanced signaling induces coordinated functional changes of the intact airway smooth muscle. The increase of AHR imposed by overexpression of the hCysLT(1)R was greater in transgenic BALB/c mice than in transgenic B6 x SJL mice. In addition, sensitization- and challenge-induced increases in airway responsiveness were significantly greater in transgenic mice than that of nontransgenic mice compared with their respective nonsensitized controls. The amplified AHR in sensitized transgenic mice was not due to an enhanced airway inflammation and was not associated with similar enhancement in MCh responsiveness. These results indicate that a selective hCysLT(1)R-induced contractile mechanism synergizes with allergic AHR. We speculate that hCysLT(1)R signaling contributes to a hypercontractile state of the airway smooth muscle.  相似文献   

10.
Bronchial hyperresponsiveness and eosinophilia are major characteristics of asthma. Calcitonin gene-related peptide (CGRP) is a neuropeptide that has various biological actions. In the present study, we questioned whether CGRP might have pathophysiological roles in airway hyperresponsiveness and eosinophilia in asthma. To determine the exact roles of endogenous CGRP in vivo, we chose to study antigen-induced airway responses using CGRP gene-disrupted mice. After ovalbumin sensitization and antigen challenge, we assessed airway responsiveness and measured proinflammatory mediators. In the sensitized CGRP gene-disrupted mice, antigen-induced bronchial hyperresponsiveness was significantly attenuated compared with the sensitized wild-type mice. Antigen challenge induced eosinophil infiltration in bronchoalveolar lavage fluid, whereas no differences were observed between the wild-type and CGRP-mutant mice. Antigen-induced increases in cysteinyl leukotriene production in the lung were significantly reduced in the CGRP-disrupted mice. These findings suggest that CGRP could be involved in the antigen-induced airway hyperresponsiveness, but not eosinophil infiltration, in mice. The CGRP-mutant mice may provide appropriate models to study molecular mechanisms underlying CGRP-related diseases.  相似文献   

11.
We delivered controlled radio frequency energy to the airways of anesthetized, ventilated dogs to examine the effect of this treatment on reducing airway narrowing caused by a known airway constrictor. The airways of 11 dogs were treated with a specially designed bronchial catheter in three of four lung regions. Treatments in each of the three treated lung regions were controlled to a different temperature (55, 65, and 75 degrees C); the untreated lung region served as a control. We measured airway responsiveness to local methacholine chloride (MCh) challenge before and after treatment and examined posttreatment histology to 3 yr. Treatments controlled to 65 degrees C as well as 75 degrees C persistently and significantly reduced airway responsiveness to local MCh challenge (P < or = 0.022). Airway responsiveness (mean percent decrease in airway diameter after MCh challenge) averaged from 6 mo to 3 yr posttreatment was 79 +/- 2.2% in control airways vs. 39 +/- 2.6% (P < or = 0.001) for airways treated at 65 degrees C, and 26 +/- 2.7% (P < or = 0.001) for airways treated at 75 degrees C. Treatment effects were confined to the airway wall and the immediate peribronchial region on histological examination. Airway responsiveness to local MCh challenge was inversely correlated to the extent of altered airway smooth muscle observed in histology (r = -0.54, P < 0.001). We conclude that the temperature-controlled application of radio frequency energy to the airways can reduce airway responsiveness to MCh for at least 3 yr in dogs by reducing airway smooth muscle contractility.  相似文献   

12.
Methacholine causes reflex bronchoconstriction   总被引:1,自引:0,他引:1  
To determine whether methacholine causes vagally mediated reflexconstriction of airway smooth muscle, we administered methacholine tosheep either via the bronchial artery or as an aerosol via tracheostomyinto the lower airways. We then measured the contraction of anisolated, in situ segment of trachealis smooth muscle and determinedthe effect of vagotomy on the trachealis response. Administeringmethacholine to the subcarinal airways via the bronchial artery(0.5-10.0 µg/ml) caused dose-dependent bronchoconstriction andcontraction of the tracheal segment. At the highest methacholine concentration delivered, trachealis smooth muscle tension increased anaverage of 186% over baseline. Aerosolized methacholine (5-7 breaths of 100 mg/ml) increased trachealis tension by 58% and airwaysresistance by 183%. As the bronchial circulation in the sheep does notsupply the trachea, we postulated that the trachealis contraction wascaused by a reflex response to methacholine in the lower airways.Bilateral vagotomy essentially eliminated the trachealis response andthe airways resistance change after lower airways challenge (either viathe bronchial artery or via aerosol) with methacholine. We concludethat 1) methacholine causes asubstantial reflex contraction of airway smooth muscle and2) the assumption may not be validthat a response to methacholine in humans or experimental animalsrepresents solely the direct effect on smooth muscle.

  相似文献   

13.
The p21-activated protein kinases (Paks) have been implicated in the regulation of smooth muscle contractility, but the physiologic effects of Pak activation on airway reactivity in vivo are unknown. A mouse model with a genetic deletion of Pak1 (Pak1(-/-)) was used to determine the role of Pak in the response of the airways in vivo to challenge with inhaled or intravenous acetylcholine (ACh). Pulmonary resistance was measured in anesthetized mechanically ventilated Pak1(-/-) and wild type mice. Pak1(-/-) mice exhibited lower airway reactivity to ACh compared with wild type mice. Tracheal segments dissected from Pak1(-/-) mice and studied in vitro also exhibited reduced responsiveness to ACh compared with tracheas from wild type mice. Morphometric assessment and pulmonary function analysis revealed no differences in the structure of the airways or lung parenchyma, suggesting that that the reduced airway responsiveness did not result from structural abnormalities in the lungs or airways due to Pak1 deletion. Inhalation of the small molecule synthetic Pak1 inhibitor, IPA3, also significantly reduced in vivo airway responsiveness to ACh and 5-hydroxytryptamine (5-Ht) in wild type mice. IPA3 inhibited the contractility of isolated human bronchial tissues to ACh, confirming that this inhibitor is also effective in human airway smooth muscle tissue. The results demonstrate that Pak is a critical component of the contractile activation process in airway smooth muscle, and suggest that Pak inhibition could provide a novel strategy for reducing airway hyperresponsiveness.  相似文献   

14.
Conjugated linoleic acid (CLA) has been shown to enhance immune reactions such as lymphocyte blastogenesis and delayed-type hypersensitivity. We investigated the role of CLA in type I (immediate) hypersensitivity, using a guinea pig tracheal superfusion model for measuring antigen-induced airway smooth muscle contraction and inflammatory mediator release. Female Hartley guinea pigs were fed a diet supplemented with 0.25 g corn oil or linoleic acid/100 g of diet (control) or 0.25 g CLA/100 g of diet for at least 1 wk before and during active sensitization to ovalbumin antigen. Tracheae from sensitized guinea pigs were suspended in air-filled water-jacketed (37 degrees C) tissue chambers in a superfusion apparatus. Tracheae were superfused with buffer containing antigen, and tissue contraction was recorded. Superfusate was collected at 90-s intervals for evaluation of histamine and PGE(2) release. CLA did not affect antigen-induced tracheal contractions when expressed as gram contraction per gram tissue. CLA significantly reduced antigen-induced histamine and PGE(2) release. CLA appears to decrease release of some inflammatory mediators during type I hypersensitivity reactions.  相似文献   

15.
An alteration in the handling of Ca2+ has been proposed as the pathogenic mechanism underlying the airway smooth muscle hyperresponsiveness of asthma. The present study tested the hypothesis that the altered responsiveness of receptor operated contraction to carbachol in allergic asthma results from a change in the phasic or tonic components. Using a kinetic approach, the phasic and tonic responses to 10 microM carbachol were quantitated in isolated epithelium-free trachea 21 days after guinea-pigs were sensitized with ovalbumin and aluminum hydroxide (as adjuvant) to generate preferentially IgE-like antibodies. Sensitization was confirmed by challenge of the isolated trachea with ovalbumin. The steady-state and kinetic characteristics of the phasic and tonic responses were the same from sensitized animals and animals treated with saline and aluminum hydroxide (control) and before and after challenge of the trachea from both groups of animals. The present results demonstrate that immunologic sensitization and challenge do not appear to elicit a defect in the phasic or tonic responses of receptor mediated contractions in airway smooth muscle and suggest there is no alteration in the handling of Ca2+ in smooth muscle from sensitized and challenged guinea-pig trachea.  相似文献   

16.
Within the airways, endothelin-1 (ET-1) can exert a range of prominent effects, including airway smooth muscle contraction, bronchial obstruction, airway wall edema, and airway remodeling. ET-1 also possesses proinflammatory properties and contributes to the late-phase response in allergic airways. However, there is no direct evidence for the contribution of endogenous ET-1 to airway hyperresponsiveness in allergic airways. Allergic inflammation induced in mice by sensitization and challenge with the house dust mite allergen Der P1 was associated with elevated levels of ET-1 within the lung, increased numbers of eosinophils within bronchoalveolar lavage fluid and tissue sections, and development of airway hyperresponsiveness to methacholine (P < 0.05, n = 6 mice per group). Treatment of allergic mice with an endothelin receptor antagonist, SB-217242 (30 mg x kg(-1) x day(-1)), during allergen challenge markedly inhibited airway eosinophilia (bronchoalveolar lavage fluid and tissue) and development of airway hyperresponsiveness. These findings provide direct evidence for a mediator role for ET-1 in development of airway hyperresponsiveness and airway eosinophilia in Der P1-sensitized mice after antigen challenge.  相似文献   

17.
Published in vivo experiments have not supported in vitro reports of the presence of nonadrenergic noncholinergic (NANC) inhibitory pathways in the cat trachea. We therefore examined these pathways, measuring tension in an innervated tracheal segment, flow resistance in more distal airways, and dynamic compliance, in 10 anesthetized mechanically ventilated cats. Initially, cervical vagal stimulation evoked contraction followed by relaxation of smooth muscle of trachea and lower airways; sympathetic stimulation evoked relaxation only. After muscarinic blockade and restoration of smooth muscle tone with 5-hydroxytryptamine (5-HT) applied topically to the tracheal mucosa, vagal stimulation did not affect tracheal segment tension, whereas sympathetic-evoked relaxation was preserved. Similar results were found when tone was restored with intravenous 5-HT, with vagal stimulation also decreasing resistance and increasing compliance. We conclude that NANC pathways are present in lower airways but not in the cervical trachea of the cat. We hypothesize that parasympathetic constriction of cat airway smooth muscle can occur without simultaneous NANC activation, whereas NANC activity occurs only in tandem with parasympathetic stimulation.  相似文献   

18.
《Life sciences》1994,54(17):PL291-PL295
Biphasic cutaneous reaction with peak response at 1 (early phase) and 24 to 48 hour (late phase)was elicited by epicutaneous challenge with antigen in actively and passively sensitized mice. Mice were actively immunized with dinitrophenylated (DNP) ascaris antigen and challenged with dinitrofluorobenzene (DNFB). Passively sensitization was carried out by the injection of monoclonal anti-DNP-IgE antibody into mice and challenge was elicited with DNFB. Prednisolone at doses of 3 to 10 mg/kg clearly inhibited both early and late phase reactions in either sensitized mice. Monoclonal anti-tumor necrosis factor (TNF)-α antibody inhibited the late phase cutaneous reaction in actively sensitized mice. Anti-interleukin-5 (IL-5) monoclonal antibody has no effect on both phase reactions in either actively and passively sensitized animals. These results indicate the possible participation of TNF-α in allergic cutaneous late phase reaction in actively sensitized mice.  相似文献   

19.
Airway responsiveness to methacholine and other bronchoconstrictors is highly variable within and among species. The aim of the experiments in this report was to evaluate the importance of the quantity of airway smooth muscle as a determinant of intra- and inter-species variability in airway responsiveness. To do this we established concentration-response curves to methacholine in a sample of normal guinea pigs as well as in rat, rabbit, and dog. After challenge we excised the lungs for the quantitation of smooth muscle by morphometry. Animals were anesthetized with pentobarbital and mechanically ventilated using a Harvard ventilator. Aerosols of methacholine were administered in progressively doubling concentrations from 0.0625 to 256 mg/mL for a period of 30 s for each concentration. The maximal response, determined from pulmonary resistance (RL), and the concentration of methacholine required to effect 50% of the maximal RL were determined. After provocation testing the lungs were removed and fixed with 10% Formalin. Midsagittal sections and parahilar sections were stained with hematoxylin-phloxine-saffron for microscopic examination of smooth muscle. The images of all airways in the sections were traced using a camera lucida side-arm attachment and digitized using commercial software. The area of the airway wall occupied by smooth muscle was determined and standardized for airway size by dividing it by the square of the epithelial basement membrane length. The variability in airway smooth muscle in the intraparenchymal airways was significantly greater between than within individual guinea pigs (n = 13). This was not true of extraparenchymal airways.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
We investigated the effects of ozone exposure (3.0 ppm, 2 h) on the responsiveness of guinea pig airway muscle in vitro from animals developing bronchial hyperreactivity. Muscarinic reactivity in vivo was determined by measuring specific airway resistance (sRaw) in response to increasing concentrations of aerosolized acetylcholine (ACh) administered before and 30 min after exposure. Immediately after reactivity testing, multiple tracheal rings from ozone- and air-exposed animals were prepared and the contractile responses to increasing concentrations of substance P, ACh, or KCl were assessed in the presence of 10 microM indomethacin with or without 1 microM phosphoramidon, an inhibitor of neutral endopeptidase. Isometric force generation in vitro was measured on stimulation by cumulative concentrations of the agonists, and force generation (in g/cm2) was calculated after determination of muscle cross-sectional area. The smooth muscle of mucosa-intact airways from guinea pigs with ozone-induced bronchial hyper-reactivity proved to be hyperresponsive in vitro to substance P and ACh but not to KCl. Pretreatment with phosphoramidon abolished the increase in substance P responsiveness but had no effect on muscarinic hyperresponsiveness after ozone exposure. Furthermore, substance P responsiveness was not augmented in ozone-exposed airways in which the mucosa had been removed before testing in vitro. Likewise, muscarinic hyperresponsiveness was not present in ozone-exposed airways without mucosa. Our data indicate that airway smooth muscle responsiveness is increased in guinea pigs with ozone-induced bronchial hyperreactivity and suggest that this hyperresponsiveness may be linked to non-cyclooxygenase mucosa-derived factors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号