首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到6条相似文献,搜索用时 0 毫秒
1.
Based on the groundwater development process, and regional economic and social developing history, we divided the spring hydrological process of the Liulin Springs Basin into two periods: pre‐1973 and post‐1974. In the first period (i.e. 1957–1973), the spring discharge was affected by climate variation alone, and in the second period (i.e. 1974–2009), the spring discharge charge was influenced by both climate variation and human activities. A piecewise analysis strategy was used to differentiate the contribution of anthropogenic activities from climate variation on karst spring discharge depletion in the second period. Then, the ARIMAX model was applied to spring flow time series of the first period to develop a model for the effects of climate variation only. Using this model, we estimated the spring discharge in the second period solely under the influence of climate variation. Based on the water budget, we subtracted observed spring discharge from the estimated spring discharge and acquired the contribution of human activities on spring discharge depletion for the second period. The results of the analysis indicated that the contribution of climate variation to the spring discharge depletion is?0.20 m3/s from 1970s to 2000s. The contribution of anthropogenic activities to the spring flow depletion was ?2.56 m3/s in 2000s, which was about 13 times more than that of climate variation. Our analysis further indicates that groundwater exploitation only accounts for 29% of the spring flow depletion due to the effects of human activities. The remaining 71% of the depletion is likely to be caused by other human activities, including dam building, dewatering during coal mining, and deforestation. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

2.
The effects of climate change and population growth in recent decades are leading us to consider their combined and potentially extreme consequences, particularly regarding hydrological processes, which can be modeled using a generalized extreme value (GEV) distribution. Most of the GEV models were based on a stationary assumption for hydrological processes, in contrast to the nonstationary reality due to climate change and human activities. In this paper, we present the nonstationary generalized extreme value (NSGEV) distribution and use it to investigate the risk of Niangziguan Springs discharge decreasing to zero. Rather than assuming the location, scale, and shape parameters to be constant as one might do for a stationary GEV distribution analysis, the NSGEV approach can reflect the dynamic processes by defining the GEV parameters as functions of time. Because most of the GEV model is designed to evaluate maxima (e.g. flooding, represented by positive numbers), and spring discharge cessation is a ?minima’, we deduced an NSGEV model for minima by applying opposite numbers, i.e. negative instead of positive numbers. The results of the model application to Niangziguan Springs showed that the probability of zero discharge at Niangziguan Springs will be 1/80 in 2025, and 1/10 in 2030. After 2025, the rate of decrease in spring discharge will accelerate, and the probability that Niangziguan Springs will cease flowing will dramatically increase. The NSGEV model is a robust method for analysing karst spring discharge. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

3.
Anomalous behaviour of specific electrical conductivity (SEC) was observed at a karst spring in Slovenia during 26 high‐flow events in an 18‐month monitoring period. A conceptual model explaining this anomalous SEC variability is presented and reproduced by numerical modelling, and the practical relevance for source protection zoning is discussed. After storm rainfall, discharge increases rapidly, which is typical for karst springs. SEC displays a first maximum during the rising limb of the spring hydrograph, followed by a minimum indicating the arrival of freshly infiltrated water, often confirmed by increased levels of total organic carbon (TOC). The anomalous behaviour starts after this SEC minimum, when SEC rises again and remains elevated during the entire high‐flow period, typically 20–40 µS/cm above the baseflow value. This is explained by variable catchment boundaries: When the water level in the aquifer rises, the catchment expands, incorporating zones of groundwater with higher SEC, caused by higher unsaturated zone thickness and subtle lithologic changes. This conceptual model has been checked by numerical investigations. A generalized finite‐difference model including high‐conductivity cells representing the conduit network (“discrete‐continuum approach”) was set up to simulate the observed behaviour of the karst system. The model reproduces the shifting groundwater divide and the nearly simultaneous increase of discharge and SEC during high‐flow periods. The observed behaviour is relevant for groundwater source protection zoning, which requires reliable delineation of catchment areas. Anomalous behaviour of SEC can point to variable catchment boundaries that can be checked by tracer tests during different hydrologic conditions. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

4.
The aim of this research was to refine the actual conceptual model related to the activation of high‐altitude temporary springs within the carbonate Apennines in southern Italy. The research was carried out through geophysical, hydrogeological, hydrochemical and isotopic investigations at the Acqua dei Faggi experimental site during five hydrologic years. The research demonstrated that, in carbonate aquifers where low‐permeability faults cause the aquifer system to be compartmentalized, high‐altitude temporary springs may be recharged by groundwater. In such settings, neither surface water infiltration in karst systems nor perched temporary aquifers play a role of utmost importance. The rare (once or a few time a year) activation of such springs is due to the fact that groundwater unusually reach the threshold head that allows the spring to flow. The activation of the studied high‐altitude temporary spring also depended on relationships between a low‐permeability fault core and a karst system that locally interrupts the low‐permeability barrier. In fact, when the hydraulic head did not reach the karst system, the concentrated head loss within the fault core did not allow the spring to flow, because the groundwater entirely flowed through the fault towards the downgradient compartment. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
As one of the largest international scientific pro- grams in geoscience and environmental science, global change studies were initiated in the early 1980s[1,2]. Noticeable achievements have been made in the stud- ies using indicators such as loess, marine sediment, permafrost, vermicular red earth, and even magmatic activity[2―6]. In recent years, the importance of ground- water as a new type of global change indicators has caused wide attention[7]. Stochastic, isotopic and hy- drochemical st…  相似文献   

6.
Much attention has recently been focused on the effects that climate variability and human activities have had on runoff. In this study, these effects are quantified using three methods, namely, multi‐regression, hydrologic sensitivity analysis, and hydrologic model simulation. A conceptual framework is defined to separate the effects. As an example, the change in annual runoff from the semiarid Laohahe basin (18 112 km2) in northern China was investigated. Non‐parametric Mann‐Kendall test, Pettitt test, and precipitation‐runoff double cumulative curve method were adopted to identify the trends and change‐points in the annual runoff from 1964 to 2008 by first dividing the long‐term runoff series into a natural period (1964–1979) and a human‐induced period (1980–2008). Then the three quantifying methods were calibrated and calculated, and they provided consistent estimates of the percentage change in mean annual runoff for the human‐induced period. In 1980–2008, human activities were the main factors that reduced runoff with contributions of 89–93%, while the reduction percentages due to changes in precipitation and potential evapotranspiration only ranged from 7 to 11%. For the various effects at different durations, human activities were the main reasons runoff decreased during the two drier periods of 1980–1989 and 2000–2008. Increased runoff during the wetter period of 1990–1999 is mainly attributed to climate variability. This study quantitatively separates the effects of climate variability and human activities on runoff, which can serve as a reference for regional water resources assessment and management. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号