首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The relationship between air (Ta) and water temperature (Tw) is very important because it shows how the temperature of a water body might respond to future changes in surface Ta. Mean monthly Tw records of three gauging stations (Bezdan, Bogojevo i Veliko Gradi?te) were analysed alongside mean monthly discharge (Q) for the same stations. Additionally, Ta series from two meteorological stations (Sombor and Veliko Gradi?te) were correlated with Tw variations over the period 1950–2012. Locally weighted scatter point smoothing (LOWESS) was used to investigate long‐term trends in the raw data, alongside the Mann–Kendall (MK) trend test. Trend significance was established using Yue–Pilon's pre‐whitening approaches to determine trends in climate data. Also, the rescaled adjusted partial sums (RAPS) method was used to detect dates of possible changes in the time series. Statistically significant warming trends were observed for annual and seasonal minimum and maximum Tw at all investigated sites. The strongest warming was observed at Bogojevo gauging station for seasonal maximum Tw, with +0.05 °C per year on average. RAPS established that the trend began in the 1980s. This behaviour is linked to climate patterns in the North and East Atlantic which determine the amount of heat advected onto mainland Europe. Statistically significant correlations were found for all Tw on an annual basis. Overall, the strongest correlations (p < 0.01) between Tw residuals and the North Atlantic Oscillation (NAO) were recorded for the winter period. These findings suggest possible predictability of Tw over seasonal time‐scales. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

2.
3.
River flow constitutes an important element of the terrestrial branch of the hydrological cycle, yet knowledge regarding the extent to which its variability, at a range of timescales, is linked to a number of modes of atmospheric circulation is meagre. This is especially so in the Southern Hemisphere where strong candidates, such as El Niño Southern Oscillation and the Southern Annular Mode (SAM), for influencing climate and thus river flow variability can be found. This paper presents the results of an analysis of the impact of the SAM on winter and summer river flow variability across New Zealand, purposefully controlling for the influence of El Niño Southern Oscillation and the tendency for the SAM to adopt a positive phase over the last 10–20 years. Study results, based on identifying hydrological regions and applying circulation‐to‐environment and environment‐to‐circulation approaches commonly used in synoptic climatology, reveal a seasonal asymmetry of the response of river flow variability to the SAM; winter flows demonstrate a higher degree of statistical association with the SAM compared to summer flows. Further, because of the complex orography of New Zealand and its general disposition normal to zonal flows of moisture bearing winds, there are intraseasonal spatial variations in river flow SAM associations with clear rain shadow effects playing out in resultant river flow volumes. The complexity of SAM river flow associations found in this study warns against using indices of large scale modes of atmospheric circulation as blunt tools for hydroclimatological prediction at scales beyond hydroclimatological regions or areas with internal hydrological consistency.  相似文献   

4.
The isotopic composition of precipitation (D and 18O) has been widely used as an input signal in water tracer studies. Whereas much recent effort has been put into developing methodologies to improve our understanding and modelling of hydrological processes (e.g., transit‐time distributions or young water fractions), less attention has been paid to the spatio‐temporal variability of the isotopic composition of precipitation, used as input signal in these studies. Here, we investigated the uncertainty in isotope‐based hydrograph separation due to the spatio‐temporal variability of the isotopic composition of precipitation. The study was carried out in a Mediterranean headwater catchment (0.56 km2). Rainfall and throughfall samples were collected at three locations across this relatively small catchment, and stream water samples were collected at the outlet. Results showed that throughout an event, the spatial variability of the input signal had a higher impact on hydrograph separation results than its temporal variability. However, differences in isotope‐based hydrograph separation determined preevent water due to the spatio‐temporal variability were different between events and ranged between 1 and 14%. Based on catchment‐scale isoscapes, the most representative sampling location could also be identified. This study confirms that even in small headwater catchments, spatio‐temporal variability can be significant. Therefore, it is important to characterize this variability and identify the best sampling strategy to reduce the uncertainty in our understanding of catchment hydrological processes.  相似文献   

5.
In this article, we investigated the variability of precipitation conditions in the Haihe River basin (HRB) during 1961–2010 by analyzing four daily precipitation scenarios. These scenarios were set with the values of, equal to 0 mm/day, 10–20 mm/day, 20–50 mm/day, and greater than 50 mm/day, which were denoted as P0, P10, P20, and P50, respectively. Results indicate that the mean values of daily precipitation decline, and its fluctuation becomes weak with years in HRB. The contour of daily precipitation with the mean value of 1.4 mm/day moves more than 100 km toward southeast in the basin from 1960s to 2000s. The variations of four precipitation scenarios show difference. The Tianjin and Langfang cities were the P0 drought center in HRB after 1980s, and the days and regions without precipitation increase with years. The magnitude of P10 extrema shows no significant changes over the last 50 years, but the rainfall centers vary with areas in HRB. The magnitude of P20 extrema shows no obvious changes in 1961–2000 but increases in 2000s. The magnitude of P50 extrema obviously declines in the last 50 years, with the rainfall center moving from northeast to south of HRB. Urbanization impacts are reflected in some cities in 1980s and 1990s, but after 2000, the urbanization impacts were not clearly detected due to the significant precipitation decreases in HRB. In summary, precipitation decrease is caused by the decreases of P50 extrema rather than P10 and P20 extrema in HRB, which would be favorable for the flood resources utilization through ample‐low flow operations over space. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

6.
Strategic planning of optimal water use requires an accurate assessment of actual evapotranspiration (ETa) to understand the environmental and hydrological processes of the world's largest contiguous irrigation networks, including the Indus Basin Irrigation System (IBIS) in Pakistan. The Surface Energy Balance System (SEBS) has been used successfully for accurate estimations of ETa in different river basins throughout the world. In this study, we examined the application of SEBS using publically available remote sensing data to assess spatial variations in water consumption and to map water stress from daily to annual scales in the IBIS. Ground‐based ETa was calculated by the advection‐aridity method, from nine meteorological sites, and used to evaluate the intra‐annual seasonality in the hydrological year 2009–2010. In comparison with the advection‐aridity, SEBS computed daily ETa was slightly underestimated with a bias of ?0.15 mm day?1 during the kharif (wet; April–September) season, and it was overestimated with a bias of 0.23 mm day?1 in the rabi (dry; October–March) season. Monthly values of the ETa estimated by SEBS were significantly (P < 0.05) controlled by mean air temperature and rainfall, among other climatological variables (relative humidity, sunshine hours and wind speed). Because of the seasonal (kharif and rabi) differences in the water and energy budget in the huge canal command areas of the IBIS, ETa and rainfall were positively correlated in the kharif season and were negatively correlated during the rabi season. In addition, analysis of the evaporation process showed that mixed‐cropping and rice–wheat dominated areas had lower and higher water consumption rates, respectively, in comparison with other cropping systems in the basin. Basin areas under water stress were identified by means of spatial variations in the relative evapotranspiration, which had an average value of 0.59 and 0.42 during the kharif and the rabi seasons, respectively. The hydrological parameters used in this study provide useful information for understanding hydrological processes at different spatial and temporal scales. Results of this study further suggest that the SEBS is useful for evaluation of water resources in semi‐arid to arid regions over longer periods, if the data inputs are carefully handled. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

7.
Information on the main drivers of subsurface flow generation on hillslopes of alpine headwater catchments is still missing. Therefore, the dominant factors controlling the water table response to precipitation at the hillslope scale in the alpine Bridge Creek Catchment, Northern Italy, were investigated. Two steep hillslopes of similar size, soil properties and vegetation cover but contrasting topography were instrumented with 24 piezometric wells. Sixty‐three (63) rainfall‐runoff events were selected over three years in the snow‐free months to analyse the influence of rainfall depth, antecedent moisture conditions, hillslope topographic characteristics and soil depth on shallow water table dynamics. Piezometric response, expressed as percentage of well activation and water peak magnitude, was strongly correlated with soil moisture status, as described by an index combining antecedent soil moisture and rainfall depth. Hillslope topography was found to be a dominant control only for the convex‐divergent hillslope and during wet conditions. Timing of water table response depended primarily on soil depth and topographic position, with piezometric peak response occurring later and showing a greater temporal variability at the hillslope bottom, characterized by thicker soil. The relationship between mean hillslope water table level and standard deviation for all wells reflected the timing of the water table response at the different locations along the hillslopes. The outcomes of this research contribute to a better understanding of the controls on piezometric response at the hillslope scale in steep terrain and its role on the hydrological functioning of the study catchment and of other sites with similar physiographic characteristics. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

8.
In the Great Lakes basin of North America, annual run‐off is dominated by snowmelt. This snowmelt‐induced run‐off plays an important role within the hydrologic cycle of the basin, influencing soil moisture availability and driving the seasonal cycle of spring and summer lake levels. Despite this, relatively little is understood about the patterns and trends of snow ablation event frequency and magnitude within the Great Lakes basin. This study uses a gridded dataset of Canadian and United States surface snow depth observations to develop a regional climatology of snow ablation events from 1960 to 2009. An ablation event is defined as an interdiurnal snow depth decrease within an individual grid cell. A clear seasonal cycle in ablation event frequency exists within the basin and peak ablation event probability is latitudinally dependent. Most of the basin experiences peak ablation frequency in March, while the northern and southern regions of the basin experience respective peaks in April and February. An investigation into the interannual frequency of ablation events reveals ablation events significantly decrease within the northeastern and northwestern Lake Superior drainage basins and significantly increase within the eastern Lake Huron and Georgian Bay drainage basins. In the eastern Lake Huron and Georgian Bay drainage basins, larger ablation events are occurring more frequently, and a larger impact to the hydrology can be expected. Trends in ablation events are attributed primarily to changes in snowfall and snow depth across the region.  相似文献   

9.
Salinity in the Casamance River Basin has been on the rise for quite some time. This is believed to be further accentuated by declining rainfall. The salinity patterns in time, space and frequency domains are analysed. These patterns are useful in designing measures not only for arresting the rise in salinity but also for mitigating it. © 1998 John Wiley & Sons, Ltd.  相似文献   

10.
Dust deposition onto mountain snow cover in the Upper Colorado River Basin frequently occurs in the spring when wind speeds and dust emission peaks on the nearby Colorado Plateau. Dust loading has increased since the intensive settlement in the western USA in the mid 1880s. The effects of dust‐on‐snow have been well studied at Senator Beck Basin Study Area (SBBSA) in the San Juan Mountains, CO, the first high‐altitude area of contact for predominantly southwesterly winds transporting dust from the southern Colorado Plateau. To capture variability in dust transport from the broader Colorado Plateau and dust deposition across a larger area of the Colorado River water sources, an additional study plot was established in 2009 on Grand Mesa, 150 km to the north of SBBSA in west central, CO. Here, we compare the 4‐year (2010–2013) dust source, deposition, and radiative forcing records at Grand Mesa Study Plot (GMSP) and Swamp Angel Study Plot (SASP), SBBSA's subalpine study plot. The study plots have similar site elevations/environments and differ mainly in the amount of dust deposited and ensuing impacts. At SASP, end of year dust concentrations ranged from 0.83 mg g?1 to 4.80 mg g?1, and daily mean spring dust radiative forcing ranged from 50–65 W m?2, advancing melt by 24–49 days. At GMSP, which received 1.0 mg g?1 less dust per season on average, spring radiative forcings of 32–50 W m?2 advanced melt by 15–30 days. Remote sensing imagery showed that observed dust events were frequently associated with dust emission from the southern Colorado Plateau. Dust from these sources generally passed south of GMSP, and back trajectory footprints modelled for observed dust events were commonly more westerly and northerly for GMSP relative to SASP. These factors suggest that although the southern Colorado Plateau contains important dust sources, dust contributions from other dust sources contribute to dust loading in this region, and likely account for the majority of dust loading at GMSP. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
There is a high degree of uncertainty about the state and fate of Pakistan's Karakoram glaciers due to data scarcity in high altitude regions. They are thought to be less vulnerable to climatic change because they behave differently as compared with eastern Himalayas. This study measures the decadal temporal changes in the glacial ice area of Karakoram's Hunza River Basin, one of the eight subbasins of Upper Indus Basin. An attempt has been made to investigate the relationship between glacial ice area changes and calculated values of precipitation, temperature and run‐off. A combination of satellite and field‐based approach is applied. Output includes maps of glacial ice hypsometries of eight glacial ice subregions of Hunza River Basin for 3 years (i.e., 1989, 2002, and 2010). The results show a decreasing trend in the glacial ice‐covered area signifying a reduction of 20.47% with the largest reduction being in the lower elevation bands. There is presently no conclusive answer as to why glacial ice in the Karakoram is acting differently from the near‐global indication of glacial ice changes. Climate data from high altitudes are needed to find answer for this anomalous behaviour.  相似文献   

12.
High‐resolution snow depth (SD) maps (1 × 1 m) obtained from terrestrial laser scanner measurements in a small catchment (0.55 km2) in the Pyrenees were used to assess small‐scale variability of the snowpack at the catchment and sub‐grid scales. The coefficients of variation are compared for various plot resolutions (5 × 5, 25 × 25, 49 × 49, and 99 × 99 m) and eight different days in two snow seasons (2011–2012 and 2012–2013). We also studied the relation between snow variability at the small scale and SD, topographic variables, small‐scale variability in topographic variables. The results showed that there was marked variability in SD, and it increased with increasing scales. Days of seasonal maximum snow accumulation showed the least small‐scale variability, but this increased sharply with the onset of melting. The coefficient of variation (CV) in snowpack depth showed statistically significant consistency amongst the various spatial resolutions studied, although it declined progressively with increasing difference between the grid sizes being compared. SD best explained the spatial distribution of sub‐grid variability. Topographic variables including slope, wind sheltering, sub‐grid variability in elevation, and potential incoming solar radiation were also significantly correlated with the CV of the snowpack, with the greatest correlation occurring at the 99 × 99 m resolution. At this resolution, stepwise multiple regression models explained more than 70% of the variance, whereas at the 25 × 25 m resolution they explained slightly more than 50%. The results highlight the importance of considering small‐scale variability of the SD for comprehensively representing the distribution of snowpack from available punctual information, and the potential for using SD and other predictors to design optimized surveys for acquiring distributed SD data. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

13.
A network of 30 standalone snow monitoring stations was used to investigate the snow cover distribution, snowmelt dynamics, and runoff generation during two rain‐on‐snow (ROS) events in a 40 km2 montane catchment in the Black Forest region of southwestern Germany. A multiple linear regression analysis using elevation, aspect, and land cover as predictors for the snow water equivalent (SWE) distribution within the catchment was applied on an hourly basis for two significant ROS flood events that occurred in December 2012. The available snowmelt water, liquid precipitation, as well as the total retention storage of the snow cover were considered in order to estimate the amount of water potentially available for the runoff generation. The study provides a spatially and temporally distributed picture of how the two observed ROS floods developed in the catchment. It became evident that the retention capacity of the snow cover is a crucial mechanism during ROS. It took several hours before water was released from the snowpack during the first ROS event, while retention storage was exceeded within 1 h from the start of the second event. Elevation was the most important terrain feature. South‐facing terrain contributed more water for runoff than north‐facing slopes, and only slightly more runoff was generated at open compared to forested areas. The results highlight the importance of snowmelt together with liquid precipitation for the generation of flood runoff during ROS and the large temporal and spatial variability of the relevant processes. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
Sulina, the middle distributary of the Danube Delta, has been significantly changed by human activities over the past 150 yr. These include engineering works in the second half of the 19th century, when the channel was transformed for navigation and the construction of jetties which nowadays extend 8 km seawards. These interventions have strongly affected the natural processes of the Black Sea coast near the Sulina mouth. To the south of the Sulina mouth, the natural mild erosion has been reversed in the area close to the jetties where accretion is occurring, while southwards the greatest erosion rate along the entire Romanian coast, of more than 20 m/yr, has been recorded. Sediment accumulation in the northern part of the mouth is also huge and has brought to the creation and swift elongation of a sediment spit in several decades. Thus, the bay located here suffers from a rapid transformation into a lagoon.  相似文献   

15.
Spatiotemporal characteristics of drought based on the Standardized Precipitation Index (SPI) in the Liao River basin (LRB) are investigated in this study. High autocorrelation in SPI seems to lend itself to drought prediction. Drought is becoming more frequent, widespread, and severe in the LRB during the past several decades. Major factors affecting drought in this basin are analysed by investigating relationship between SPI and several circulations including western Pacific Subtropical High (WPSH), East Asian Summer Monsoon (EASM) and El Niño‐Southern Oscillation (ENSO) indices. Different correlation patterns between WPSH indices and SPI are obtained. Several significant positive correlations between the area, intensity of WPSH and SPI are observed in the west and the centre of the study area, while negative correlations are observed in the east. Reverse patterns are observed in the correlation between the ridge of westward longitude of WPSH and SPI. Corresponding lag‐correlation is dominated by positive correlations between the area, intensity of WPSH and SPI, and by negative correlation between the ridge of westward longitude of WPSH and SPI. EASM is mainly negative related with drought in the east of the LRB. Significant positive correlation between ENSO and SPI is mainly located in the east while negative correlation is located in west of the basin. Lag‐correlation (with lags of 1 to 12 months) between them is also investigated and results show that significant negative correlation is located in a broad area extending from the west to the centre of the basin, while less positive correlation is observed with the increase of lags. The possibility of employing general circulation models (GCMs) for drought prediction is discussed based on the above analyses. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

16.
The spatial and temporal variations of precipitation in the desert region of China (DRC) from 1951 to 2005 were investigated using a rotated empirical orthogonal function (REOF), the precipitation concentration index (PCI) and the Mann–Kendall trend test method (M‐K method). In addition, the association between variation patterns of precipitation and large‐scale circulation were also explored using the National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis data. The results indicated that the spatial pattern of precipitation was primarily the local climate effect significant type, with the first three EOFs explaining a total of 55·3% of the variance, and the large‐scale climate system effect type, which explained 9·8% of the variance. Prior to the 1970s, the East Asian summer monsoon was stronger, which resulted in abundant precipitation in the Inner Mongolia region. Conversely, the climate of the Xinjiang region was controlled by westerly circulation and had lower precipitation. However, this situation has been reversed since the 1980s. It is predicted that precipitation will decrease by 15–40 and 0–10 mm/year in the Inner Mongolia plateau and southern Xinjiang, respectively, whereas it will likely increase by 10–40 mm/year in northern Xinjiang. Additionally, 58–62% of the annual rainfall occurred during summer in the DRC, with precipitation increasing during spring and summer and decreasing in winter. The intra‐annual precipitation is becoming uniform, but the inter‐annual variability in precipitation has been increasing in the western portions of the DRC. The probability of precipitation during the study period increased by 30% and 22·2% in the extreme‐arid zones and arid zones, respectively. Conversely, the probability of precipitation during the study period decreased by 18·5% and 37·5% in the semi‐arid zones and semi‐wet zones, respectively. It is predicted that the northwest portion of the DRC will become warmer and wetter, while the central portion will become warmer and drier and the northeast portion will be subjected to drought. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
The long‐term trends of yearly discharge time series and runoff variability at seven stations along the River Danube are identified. The results of statistical analysis of discharge time series indicate the period around the year 1860 was the driest decade in central and eastern Europe since 1840. In these years, the mean annual air temperature in central Europe was lower by about 1 °C compared with the 1990s. It is important to notice that the two driest decades (around 1860s and 1990s) of the instrumental era occurred in very different temperature conditions. The 28–31 years; 20–21 years; 14 years, as well as 4·2, 3·6, and 2·4 years fluctuations of annual discharge in the River Danube were found. Also, the long‐term streamflow prediction based on stochastic modelling methods is treated. Harmonic models and the Box–Jenkins methods were used. The predictions of yearly River Danube discharge time series were made for two decades ahead. From the stochastic models it follows that the annual discharge in the Danube at Turnu Severin station should reach its local maximum within the years 2004–06. The period 2015–19 should be dry. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

18.
Abstract

In the first part of this study, a flood wave transformation analysis for the largest historical floods in the Danube River reach Kienstock–Bratislava was carried out. For the simulation of the historical (1899 and 1954) flood propagation, the nonlinear river model NLN-Danube (calibrated on the recent river reach conditions) was used. It was shown that the simulated peak discharges were not changed significantly when compared to their historical counterparts. However, the simulated hydrographs exhibit a significant acceleration of the flood wave movement at discharges of between 5000 and 9000 m3 s-1. In the second part, the travel time-water level relationships between Kienstock and Bratislava were analysed on a dataset of the flood peak water levels for the period 1991–2002. An empirical regression routing scheme for the Danube short-term water level forecast at Bratislava station was derived. This is based on the measured water level at Kienstock gauging station.  相似文献   

19.
Water and energy fluxes at and between the land surface, the subsurface and the atmosphere are inextricably linked over all spatio‐temporal scales. Our research focuses on the joint analysis of both water and energy fluxes in a pre‐alpine catchment (55 km2) in southern Germany, which is part of the Terrestrial Environmental Observatories (TERENO). We use a novel three‐dimensional, physically based and distributed modelling approach to reproduce both observed streamflow as an integral measure for water fluxes and heat flux and soil temperature measurements at an observation location over a period of 2 years. While heat fluxes are often used for comparison of the simulations of one‐dimensional land surface models, they are rarely used for additional validation of physically based and distributed hydrological modelling approaches. The spatio‐temporal variability of the water and energy balance components and their partitioning for dominant land use types of the study region are investigated. The model shows good performance for simulating daily streamflow (Nash–Sutcliffe efficiency > 0.75). Albeit only streamflow measurements are used for calibration, the simulations of hourly heat fluxes and soil temperatures at the observation site also show a good performance, particularly during summer. A limitation of the model is the simulation of temperature‐driven heat fluxes during winter, when the soil is covered by snow. An analysis of the simulated spatial fields reveals heat flux patterns that reflect the distribution of the land use and soil types of the catchment. The water and energy partitioning is characterized by a strong seasonal cycle and shows clear differences between the selected land use types. Copyright © 2016 The Authors Hydrological Processes Published by John Wiley & Sons Ltd.  相似文献   

20.
D. Markovic  M. Koch 《水文研究》2014,28(4):2202-2211
Long‐term variations and temporal scaling of mean monthly time series of river flow, precipitation, temperature, relative humidity, air pressure, duration of bright sunshine, degree of cloud cover, short wave radiation, wind speed and potential evaporation within or in vicinity of the German part of the Elbe River Basin are analyzed. Statistically significant correlations between the 2–15 year scale‐averaged wavelet spectra of the hydroclimatic variables and the North Atlantic Oscillation‐ and Arctic Oscillation index are found which suggests that such long‐term patterns in hydroclimatic time series are externally forced. The Hurst parameter estimates (H) based on the Detrended Fluctuation Analysis (DFA) indicate persistence for discharge, precipitation, wind speed, air pressure and the degree of cloud cover, all having an annual cycle and a broad low‐frequency distribution. Also, DFA H parameter estimates are higher for discharge than for precipitation. The major long‐term quasi‐periodic variability modes of precipitation detected using Singular Spectrum Analysis coincide with those detected in the discharge time series. Upon subtraction of these low‐frequency quasi‐periodic modes, the DFA H parameter estimates suggest absence of the persistence for both precipitation and discharge. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号