首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 829 毫秒
1.
张芳芳  李雷  张轲 《广州化工》2013,(17):31-33
由于碳纳米管表面缺陷少、缺乏活性基团,并且具有很强的范德华力和很高的长径比,严重的影响了它的应用。本文从共价修饰和非共价修饰两方面,介绍了目前碳纳米管功能化修饰的方法和研究状况。从催化、医疗、材料等方面着重介绍了功能化修饰后的碳纳米管一些最新应用进展,并展望了碳纳米管的发展与应用前景。  相似文献   

2.
碳纳米管作为一种一维纳米材料具有优异的性能,但是由于自身结构导致的不溶性,以及易于团聚和缺乏表面功能基团等实际问题,限制了其应用范围,因此,碳纳米管功能化修饰是碳纳米管应用研究的重点领域,本文介绍了碳纳米管表面功能化的几种主要方法:机械分散功能化、共价功能化、非公价功能化等,结合国内外研究进展,对碳纳米管功能化修饰的机理及方法进行综述。  相似文献   

3.
这篇综述主要从碳纳米管的有机共价修饰和有机非共价修饰方面着手,重点阐述碳纳米管有机修饰的原理和方法,并且综合国内外的现状,研究了功能化的碳纳米管在生物、医学材料上的应用,展望了有机修饰的碳纳米管今后发展的热点方向。  相似文献   

4.
陈中芹  杨慰珺 《河北化工》2009,32(7):8-9,23
碳纳米管的发现是碳团簇领域的又一重大科研成果,探讨了碳纳米管的结构、特性、活化方法,评述了这种纳米尺寸的新型碳材料在电化学器件、氢气存储、场发射装置、碳纳米管场效应晶体管、催化剂载体、碳纳米管修饰电极领域的应用价值,展望了碳纳米管的介入对全球性物理、化学及材料等学科界所带来的美好前景。  相似文献   

5.
壳聚糖/碳纳米管复合材料被认为是理想的电极候选材料之一,具有优异的生物相容性和电化学催化性。本文主要综述了壳聚糖/碳纳米管复合材料的制备方法及在生物传感器和电化学分析领域中的应用,给出了基于壳聚糖/碳纳米管复合材料的修饰电极对各种神经传导性物质及有害离子等物质的检测范围和检出限。  相似文献   

6.
化学修饰电极如今在电化学和电分析化学中应用极为广泛。综述了碳纳米管的结构和性能,介绍了碳纳米管修饰电极的制备及应用。  相似文献   

7.
二茂铁衍生物的合成及其电化学应用   总被引:1,自引:0,他引:1  
二茂铁及其衍生物的合成与应用研究一直是有机金属化学、结构化学和材料科学等领域的研究热点。对二茂铁衍生物的性质、合成及其应用研究现状作了归纳和评述,重点介绍了它的电化学性能及在电化学修饰电极、电催化、电化学分子识别中的应用。并且简要的介绍了今后的研究方向。  相似文献   

8.
碳纳米管(CNTs)具有很多优良性能,但由于在聚合物基体分散性差,限制了其广泛应用。超支化聚合物是高度支化的大分子,具有低黏度、高溶解性及含有大量末端基团等特点。利用超支化聚合物共价修饰CNTs,不仅可以提高CNTs在聚合物基体中的分散性,还能使CNTs拥有新的功能。介绍了超支化聚合物共价修饰CNTs的方法,探讨了其在生物医学、纳米材料等方面的应用前景,最后对超支化聚合物共价修饰CNTs的发展提出了建议。  相似文献   

9.
综述了近年来通过原位聚合法和化学共价法制备碳纳米管/导电聚苯胺复合材料的一些最新研究进展;并且重点分析了碳纳米管、聚苯胺之间的相互作用;及其对碳纳米管的电化学氧化还原性的稳定效应。  相似文献   

10.
高定向的碳纳米管阵列由于有优越的电导率、高比表面积、发达的多孔结构而具有良好的电化学性能如大容量、优异的速率性能和较长的循环寿命,这些独特的性质使其在电化学领域显现出巨大的应用潜力。本文简要介绍了碳纳米管阵列的制备,并从电化学储能、电化学催化和电化学传感器等领域综述近年来碳纳米管阵列在电化学应用中的最新研究进展,分析了其所面临的问题,并提出了未来碳纳米管阵列在电化学应用中的发展方向。关键词:碳纳米管阵列;电化学性能;储能;催化;传感器中图分类号:  相似文献   

11.
Current discoveries of different forms of carbon nanostructures have motivated research on their applications in various fields. They hold promise for applications in medicine, gene, and drug delivery areas. Many different production methods for carbon nanotubes (CNTs) have been introduced; functionalization, filling, doping, and chemical modification have been achieved, and characterization, separation, and manipulation of individual CNTs are now possible. Parameters such as structure, surface area, surface charge, size distribution, surface chemistry, and agglomeration state as well as purity of the samples have considerable impact on the reactivity of carbon nanotubes. Otherwise, the strength and flexibility of carbon nanotubes make them of potential use in controlling other nanoscale structures, which suggests they will have a significant role in nanotechnology engineering.  相似文献   

12.
碳纳米管表面改性及其应用于复合材料的研究现状   总被引:1,自引:0,他引:1  
孟胜皓  闫军  汪明球  杜仕国  王琦 《化工进展》2014,33(8):2084-2088
对碳纳米管进行表面改性可提高碳纳米管的表面活性、分散能力和与基体材料之间的相容性,从而提高其在复合材料中的增强效果。本文介绍了碳纳米管表面改性的方法,分为物理法和化学法,物理法主要有高能机械研磨法、高能球磨法和超声振动法;化学法主要有酸处理法、偶联剂法、化学镀法、高能射线辐照法和原子转移自由基聚合法。在实际应用中常将几种改性方法联合使用,使得到的改性产物性能更稳定,性质更多样化。同时,介绍了改性后的碳纳米管在各种复合材料中的应用现状。并指出了对碳纳米管进行改性的两个重点:一是尽量保持碳纳米管的本身结构完整性;二是提高碳纳米管在基体中的分散性。  相似文献   

13.
Since their discovery, carbon nanotubes (CNTs) continue to attract growing interest from scientists in a wide range of fields, likely due to their fascinating nanoarchitecture as well as their electronic and physical properties. From the viewpoint of synthetic chemistry, the chemical and physical stability, high surface area, and π-stacking nature of CNTs are attractive features for their application as solid supports for molecular catalysts. The chemical functionalization of CNTs has been explored for various applications, including covalent and noncovalent grafting of molecular catalysts. Although noncovalent grafting provides less stable immobilized catalysts compared with covalently grafted hybrid molecular catalysts and CNTs, the preparation protocol is expeditious and repetitive use of the catalysts is well demonstrated, confirming their potential broad utility in synthetic organic chemistry.  相似文献   

14.
Since their observation in 1976 and 1991, carbon nanotubes (CNTs) have generated much interest due to their properties and potential applications. CNTs are tubular carbon molecules with remarkable mechanical, electrical, chemical and thermal properties, which make them useful in various applications. Industries producing CNTs via the fluidized bed chemical vapor deposition technique face challenges related to the size of CNT bundles. The two main challenges are agglomeration and agglomerate size distribution control. A solution to these challenges involves the use of jet mills to grind the CNT agglomerates. The goal of this study was to determine whether the nanotubes could be ground with air jets using a commercial jet mill and apply a two-parameter model to describe the grinding process. The present study has indicated that air-jet grinding of CNTs is feasible with a typical commercial jet mill. This paper presents the effect of operational parameters on the arithmetic mean diameter of the ground product. Sonic velocity through the grinding nozzles was required to obtain reasonable grinding rates and relatively narrow particle size distributions. This occurs at high air to solids feedrate ratios. Additionally, a simple attrition model can describe the grinding process in the spiral jet mill.  相似文献   

15.
碳纳米管作为一种新型电磁吸波剂,因其独特的物理和化学性能引起了人们极大的关注。本文简述了碳纳米管的吸波机理及吸波性能的表征,重点介绍了碳纳米管在聚合物吸波复合材料中的应用,如碳纳米管/树脂基复合材料、碳纳米管/导电高聚物复合材料、碳纳米管/橡胶基复合材料,最后展望了吸波材料的发展方向。  相似文献   

16.
Achieving stable suspensions of carbon nanotubes (CNTs) in water is still a challenge. Addition of surfactants is desirable as it allows keeping intact the intrinsic properties of the CNTs. However, for different applications, the potential toxicity of the surfactant is an important issue. Polysaccharides are among the best candidates and chemical modification can improve their intrinsic features. They can thus combine the properties of added synthetic counterparts with their intrinsic biocompatibility. In this work, we focused on the synthesis of hydrophobically modified Xanthan (Xan) with three derivatives (Diphenylmaleic anhydride, Phtalic anhydride, Epichlorhydrin-Phenol) to disperse CNTs. The dispersion and the stability against sedimentation of double walled carbon nanotubes (DWCNTs) have been investigated (rheological properties, zeta potential) as a function of pH and Xan concentration. Our results show that stable suspension of DWCNTs for 0.5% (w/w) could be obtained with the three derivatives of modified Xanthan gum in acidic and alkaline media while Xan itself is a very poor dispersing agent for CNTs, giving good evidence of the validity of our approach.  相似文献   

17.
Tuncel D 《Nanoscale》2011,3(9):3545-3554
Carbon nanotubes (CNTs) are interest to many different disciplines including chemistry, physics, biology, material science and engineering because of their unique properties and potential applications in various areas spanning from optoelectronics to biotechnology. However, one of the drawbacks associated with these materials is their insolubility which limits their wide accessibility for many applications. Various approaches have been adopted to circumvent this problem including modification of carbon nanotube surfaces by non-covalent and covalent attachments of solubilizing groups. Covalent approach modification may alter the intrinsic properties of carbon nanotubes and, in turn make them undesirable for many applications. On the other hand, a non-covalent approach helps to improve the solubility of CNTs while preserving their intrinsic properties. Among many non-covalent modifiers of CNTs, conjugated polymers are receiving increasing attention and highly appealing because of a number of reasons. To this end, the aim of this feature article is to review the recent results on the conjugated polymer-based non-covalent functionalization of CNTs with an emphasis on the effect of conjugated polymers in the dispersibility/solubility, optical, thermal and mechanical properties of carbon nanotubes as well as their usage in the purification and isolation of a specific single-walled nanotube from the mixture of the various tubes.  相似文献   

18.
煤基碳纳米管的制备   总被引:2,自引:0,他引:2  
碳纳米管是一类新型纳米炭,具有很多潜在的应用价值,用煤为碳源制备碳纳米管可以降低其成本,本文介绍了电弧放电法和等离子体法制备煤基碳纳米管研究情况,以及相应的煤基碳纳米管生长机制。  相似文献   

19.
Selective growth of carbon nanotubes (CNTs) on silicon carbide (SiC) substrate will create some new applications in composites and electronic devices by combining their mechanical and physical properties. Multi-walled CNTs were successfully grown on SiC whiskers using a conventional xylene–ferrocene chemical vapor deposition process. A thin oxide layer was created on the surface of the SiC whiskers by high-temperature annealing in air before CNT growth. The effect of catalyst morphology and chemistry on the growth of CNTs was analyzed. Our technique may be further applied to the controlled growth of CNTs on any other SiC substrates.  相似文献   

20.
The purpose of the current review article is to present a compherensive understanding regarding pros and cons of carbon nanotube–related nanocomposites and to find ways in order to improve the performance of nanocomposites with new designs. Nanomaterials including carbon nanotubes (CNTs) are employed in industrial applications such as supercapacitors, and biosensors, and etc. The present article has been prepared in three main categories. In the first part, carbon nanotube types have been presented, as single-walled carbon nanotubes, multi-walled carbon nanotubes, and also equivalent circuit models, which have been used to more clarify the experimental measurements of impedance. In the second part, nanocomposites with many carbon, inorganic and polymeric materials such as polymer/CNT, activated carbon/CNT, metal oxide/CNT, and carbon fiber/CNT have been investigated in more detail. In the third part, the focus in on the industrial applications of CNTs. including supercapacitors, biosensors, radar absorbing materials, solar cells, and corrosion protection studies. This review article explains the latest advances in carbon nanotubes and their applications in electrochemical, electrical and optical properties of nanocomposites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号